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Abstract

In separuce parts, this report addresses: (1) the use of multiscale modulation to obtain bandwidth-,
efficient modulation, and the performance of such modulation in fading channels; (2) The analysis of
transmission through fading channels, and approaches to the design of transmitter and receiver waveforms
which will perform optimally in fading channels. In the first case, it is shown that using wavelet and/or
scaling waveforms can lead to modulation which is comparable to, or better than, many conventional
schemes, including GMSK. Performance in fading channels is similar to that of other methods. The
performance of multiscale signaling is also addressed using the matched-filter bound method. In the
second part, the signal design problem is formulated as an optimization problem and an analysis approach
outlined which leads to maximization of SNR in fading channels. Inclusion of constraints for good spectral
localization is also possible.

1 Introduction

In this report, results from two related directions of research are presented. First, results related to wavelet
modulation are discussed. Second, results related to waveform design for communication over fading channels
are presented.

Wavelet modulation employs as its baseband basis waveforms the shift- and scale-orthogonal scaling
functions and wavelets, typified by Daubechies wavelets (see, e.g., [1]). Because of the orthogonal properties,
it is possible to employ multiscale modulation, sending information on multiple time scales.

One of the potential benefits of wavelet modulation is that, as basis functions with longer support are
used (resulting in multiple time-overlapped waveforms), the smoothness of these waveforms leads to better
spectral localization, as measured by the fraction of out-of-band power (FOOBP), than many other popular
signal formats, including GMSK.

As one of the research hypothesis, it was conjectured that transmitting on multiple scales and over long
time frames might yvield a performance benefit in channels experiencing fast fading. The conjecture arose
with the idea that a short fading interval might affect only a small fraction of the overall waveform. A
significant part of the research project was devoted to exploring this question. The findings are that in
sotne cases, there may be a modest benefit in a fading channel, in comparison to conventional (flat-pulse)
signaling. However, the improvements seemed to apply to such a narrow set of specific cases, and in any
event be sufficiently modest, that it seemed difficult justify the use of these basis functions on that criterion
alone.

This leads to the question of whether there might be other waveforms which could be specifically designed
to be effective in fading channels and which might be, furthermore, constrained to have a sufficiently high
degree of spectral localization that they could be used in practical channels. This therefore, forms the turning
point for the second part of the research, into waveform design for fading channels. As of the time of this
report, approaches to the problem have been formulated, as will be discussed, but the performance of these
methods compared with other channels remains to be accomplished.

The organization of this report is as follows. Sections 2 through 3.2 present the basic notation, spectral
efficiency, and analysis for communication over fading channels using differential detection. In section 4,
the matched filter bound is employed to analyze multiscale transmission over several fading profiles. It
is found that the performance is somewhat better than raised cosine waveforms in many cases, but again
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the improvement is at best moderate. Portions of these materials (greatly abbreviated) were presented at
the International Telemetering Conference (ITC) [2]. In section 6, the concept of adapting the transmitted
spectrum by tuning wavelet parameters is briefly introduced.

In Part I, we consider several aspects of the analysis and design of signal waveforms for fading channels.
Section 7 provides a discussion of modeling for transmission over fading channels, describes some fading
channel models, and provides a literature survey or related work. This work has not yet appeared in print.
In section 8, an analysis of transmission through a multiplicative fading channel is performed using two
methods of analysis. This section is strictly a matter of analysis, undertaken to understand more clearly the
nature of fading. This section has not been published elsewhere. In section 9, a method is introduced to
design signal waveforms which are optimal with respect to fading without the assumption of synchronization.
This design is extended in section 10 to the question of designing the signaling waveform and the receiver
waveform to achieve maximum signal to noise ratio when perfect synchronization is assumed. The design
methodology is outlined but, due to the fact that research is still underway, waveforms and performance
results are not presented.

A set of appendixes describes some detaiis of computations need in sections 3.1 and 4.

In summary, this research summarized in this report offers the following contributions:

1. A model! for using wavelet waveforms and employing their shift and scale orthogonality properties to
obtain flexible, bandwidth-efficient modulation waveforms.

2. An analysis of the performance of these sigﬁals in Rician fast fading channels with differential detection,
showing that the waveforms perform well, but with improvements that are only moderate.

3. A matched-filter bound analysis of multiscale transmission through some common channel models,
showing performance comparable (and usually somewhat better) than a similar analysis for raised
cosine signal waveforms.

4. An introduction to the concept that the waveforms can be modified parametrically to match the
waveform to the channel spectrum. :

5. An analysis of a multi-chip fading channel model.

6. A design approach for finding the optimal transmission waveform and receiver filter matched to a
channel with a prescribed fading autocorrelation function.



Part 1
Wavelet Modulation

2 Notation

A notation is established here which is used throughout this first part. A multiresolution analysis [3, 1, 4, 5]
is formed by a sequence of closed sub-spaces V; of L*(R) which are nested according to

VecVicVoCcVoyCVogee.
The spaces have the following pertiner{t properties (among others): the scale invariance property,
f(t) € Vi & f(2™t) € Vo
the shift invariance property, '
flH)eVo= f(t—-n) eV forallneZ,
and the existence of a basis function ¢(t) such that
Vo = span{¢(t — n);n € Z}

and where span{-} is the linear span of the set of functions in the argument. The basis functions additionally
satisfy the shift orthogonality property

(¢t — 3), o(t — K)) = djis (1)

where the inner product is (f,g) = [ f(t)g(t) dt and §;  is the usual Kronecker delta with integer arguments.

The function ¢(t) is known as a scaling function and can be shown to be a lowpass function. The shift,

orthogonality property of the scaling function (1) can be shown to be equivalent to the Fourier domain
constraint

§§|aw+2hﬂﬁzl, (2)
k=-00

where o(w) is the Fourier transform of ¢(t) [1]. The constraint (2) is equivalent to the Nyquist zero ISI
criterion (see. eg. [6, p. 561]), so the class of scaling functions includes Nyquist signals, including the
square-root raised-cosine waveform.

Let W, be the orthogonal complement of Vj in Vj_i; ie.,

Visi = Ve W, 3)

where 7 indicates the direct sum. It follows that W is orthogonal to Wj: for j # j' and that for j < J,

Wik (4)

J—-j—1
V=V e

k

(=]

where all the subspaces on the right are orthogonal to each other.
It can be shown that there is a function ¢(t) such that

‘o = span{y(t —n);n € Z}.

The function v(t) is a wavelet function and is a bandpass signal. From the properties of the multiresolution
analysis, it follows that ¢(t) € Vo C V_; must be a linear combination of shifts of ¢(2t) € V_1,

N-1
o(t) = ckd(2t — k) (5)

k=0

<.




and 9(t) € Wp C V_; can be expressed as the linear combination
N-1
P(t) =Y dep(2t — k) (6)
k=0

for appropriately selected sequences {cx} and {dx}. Let ;& (t) = 29/2¢(27t — k) and v;x(t) = 27/29(27t — k).
Then by the properties of the multiresolution analysis,

(j.k(t), Yim(t)) =0 j>landjklmeZ
and
(W56 (), Yi,m(t)) = 8510k m-

In (5), if the number of coefficients N is finite then the function has compact support. While compact
support is not necessary for communicaticn applications (e.g. the square-root raised-cosine does not have
compact support), compact support does simplify some aspects of implementation and analysis. It is assumed
throughout this report that the scaling function employed has support on t € [0,g]. Compactly-supported
scaling functions give rise to compactly-supported wavelet functions. Wavelet and scaling functions param-
eterized by N coefficients in (5) and (6) are said to be in the Dy family, where D represents Daubechies [1]
and N must be even. The support and smoothness of the ¢ and  functions increase with N. Observe that
the wavelet function with two coefficients is the familiar Haar function.

Let
1
or(t) = ﬁd’(t/T)
and
1
Yr(t) = -\/—,T-w(t/T)-

These scaled functions can be used to transmit one symbol of information every T seconds according to the
baseband signal model

sa(t) = V2Sg(t), (7
where
9(t) = Y aipr(t —iT), ®
i€Z

and S is the signal energy, a; € C, and C is some real or complex signal constellation with 2™ signal points.
In (8). T is said to be the symbol time, being the time interval between transmission of adjacent symbols,
even though the duration of the symbol is qT seconds. Each scaling function transmits a single symbol. By
the shift orthogonality property, the outputs of a matched filter provide sufficient information to detect the
received signal independently of any other symbols. This is similar, in some respects, to partial response
signaling, in which the signal is spread out over several symbol times. However, unlike partial response
signaling, the detector does not need to traverse a trellis or keep track of previous symbols, because of the
orthogonality between signals. Like a Nyquist zero ISI signal, the sampled outputs of the matched filter are
orthogonal to signals at other symbol times and on other scales.

Using the multiresolution property of (3), a signal spanning the same space can be written using basis
functions ¢»1 and vwyT, each with independent data streams:

g(t) = Z ay i¥ar(t — 2it) + a¢,,-¢2T(t - 2iT). (9)
i€Z

If the signal amplitudes ay; and ay; are each drawn from constellations containing 2" signals, then the
data rate for the signal of (9) is the same as for the signal of (8), even though the symbol times are twice



as long. The multiresolution property can be applied recursively N, times to the scaling function in (9), as
suggested by (4). The transmission using N, scales can be written as

Nl
9&)= 5. Y ay ittt —i2°T) + Y agibomr(t —i2%T). (10)
o=1 i€Z i€eZ

Observe that if the transmission on each scale is binary, then the energy per bit is the same for bits on all
scales. This means that the power per bit decreases with increasing scale length.
For the sake of the computations below, it will be convenient to introduce more compact notation. Let

(t)‘_ w'Z"T(t) 1<o <N,
Pl =\ gomup(t) o =N, +1

be used to represent the scaling function and the wavelets on the different scales, depending on the value of
. Throughout the report, let ¢’ = min(, N,) and s’ = min(s, N,) denote the actual scale number and let
T, = 2°'T. The signal amplitudes on scale o at the ith symbol be indexed by multiples of 27, with

b , . = a"ll,a,i ISUSNG
7,274 Qg,i c=N,+1.

It is also convenient to let g, = 27¢ (the length of the support of the signal on scale o), with gs = g, When
o = N, + 1. Using these notational conventions, the signal (10) can be written as

N,+1
gt) = > > b, g et —iTs) (11)
o=1 i€Z
The signal in (11) can also be written as
N,+1
g(t) = Z z bo‘,ipa(t —~1T) (12)
o=1 jg2o'Z

Figure 2(a) illustrates the time-overlap of multiscale signals for the particular case when N, =2 and ¢ =5,
using the notation of (12). At every instant in time (N, + 1)q symbols are being transmitted. The figure also
illustrates the bit indexing convention. Figure 3 shows another point of view for multiscale transmission.
Rather than focusing on the overlap across the different signals, it illustrates the intervals in which new signals
are launched. The overall signal pattern in figure 3 repeats every N, symbol times. The group of signals
within a repeating pattern is called a supersymbol, with length N,T seconds and containing 2N+ individual
symbols. The constituent symbols in a supersymbol may be considered as components in a multidimensional
signal space. By sending information on a subset of the full set of scales, a variety of signal dimensionalities
may be obtained.

It is interesting to examine the spectral efficiency of multiscale signaling. Due to the multiresolution
property of the scaling functions, it can be shown [7] that if the signal constellation on each scale is the
same. the power spectrum of the multiscale signal (11) is the same as the power spectrum of the single-scale
signal (8). The spectral efficiency of the signal may be determined by means of the fractional out-of-band

power (FOOBP). defined by

B2 G(f)d
o) =1 - 22
S GUHdf
where G(f) is the power spectral density of the signal,
_ le@nf)?
G =25




and ¢(27 f) is the Fourier transform of ¢(t). Figure 4 illustrates the FOOBP for transmission using scaling
functions from the D, Dg, Dg, and Dyo families. Also shown, for comparison, is the FOOBP for flat-
topped pulse signaling, MSK, SFSK, and GMSK with h = 0.36 [8]. For each waveform, 4-PSK signaling (2
bits/symbol) is used. Being a continuous signal, the Dy scaling function is more spectrally localized than
the flat-topped pulsed, but not as much as MSK. Scaling functions having more coefficients, hence better
regularity, have better localization. The Dg scaling function has spectral localization similar to that of MSK,
and Dg and Do do better than MSK. The longer scaling functions do as well as GMSK or SFSK or other
spectrally efficient techniques. Even longer scaling functions are possible, resulting in even better spectral
localization. The only performance penalty for going with longer signals is a slight increase in latency at the
matched filter, and the need for filters matched at every scale. In interpreting the FOOBP plot of figure 4,
the T normalizing the horizontal axis is the reciprocal of the transmission rate (in bits/sec): T = 1/R.

3 Fast Rician Fading Channel Model

For the purposes of analysis through the fading channel, the signal of (11) is assumed to be binary, b,,; € £1.
The model for the fast fading Rician chanrel is shown in figure 5 [9], where

54(t) = Re{V2Sg(t) exp[j2n f.t]}
and g(t) is given by (11). The signal §,(t) is the fading component, given by
§-(t) = Re[€(t)g(t — tp) exp[j27(fe + fp)(t — tD)] (13)

where tp is the delay of the fading component, fp is the Doppler shift of the signal, and £(t) is a complex,
stationary, zero-mean Gaussian random process with autocorrelation function

Re(r) = 3 BIE(0€(¢ + 7)] = Dpe(r).

D is a constant and pg(7) is normalized so that p¢(0) = 1. The baseband equivalent fading component is

se(t) = &(t)g(t —tp)exp[j2n(fpt — (fe + fp)tD)] (14)
N,+1 )
= &) Y. S b, pepolt - to — iT,) expli2n(fot — (f- + fp)tD)]. (15)
o=1 i€Z
The channel also introduces the AWGN baseband noise process ng(t) with correlation

Ra(r) = 3 Elni (Dno(t + 7)) = Nob(r).

The baseband equivalent received signal is
r(t) = s4(t) + s-(t) + no(t).

The receiver uses filters matched to the signal on each scale and employs differential detection. A
baseband equivalent receiver is shown in figure 6(a) 6(b). The receiver for scale s correlates the received
signal with a signal p,(t — kT) — the matched waveform starting at the kth signal interval for k € 2’7 —
and integrates over [kT, (k + ¢,)7T].

The output of the matched filter on scale s at the sample instant is

z25((k + g5)T) £ zo1(k) = cs((k + qa)T) + 14((k + ¢5)T) + ny((k + ¢,T)

where ¢, is the direct signal part, r, is the fading signal part, and n, is the noise part. The signal part can
be written as

(k+q.)T

eo((k +a0)T) 2 con(k) = / Pa(t — KT)sa(t)dt
kT



which, due to shift and scale orthogonality, may be written as

cs.1(k) = bk V2S.

The noise part of the output,
A (k+Qs)T
ng((k+g5)T) =1np1 = / ps(t — kT)no(t)dt
kT

is zero-mean Gaussian with variance

1
a1 2 5 B3 (ae + KT)ny (g, + kT)] = No, (16)

due to the unit-energy of the waveform p,(t). The fading component output of the matched filter is

(k+q-)T
ro((k +00)T) 2 for(k) = / pa(t — KT)sn (£)dt.
kT

For differential detection, the matched filter output at the previous sample interval is also used, which is
ca((k = 2% +qo)T) = co((k = 2% + qa)T) +75((k = 2" +4)T) +ns((k = 2 +,)7T)
for k € 2 Z. The direct signal part is

(k=2*"+¢.)T

(k=27 +q0)T) 2 con(k) = / po(t = (k = 27)T)sa(t)dt = b 4_pur)V/2S.

(k=24")T

The noise part n,» again has variance No. The covariance between 7 and n, 2 is

1 (g.=2)T ,
miz = 3 Elnmeal = No /0 Pa(t)pa(t + 2 T)dt = n3, = 0. (17)

The fading component from the previous symbol instant is

(k=2 +¢,)T

k=2 +a)T) 2 fuatb) = [ = (k=2 )T)sn(d
(k=24)T

3.1 Probability of Error

Although the symbols at other scales and shifts are orthogonal to the symbol transmitted at scale s and
interval k transmitted in the direct portion of the received signal, the random multiplicative factor and delay
of the fading component s,.(t) makes it so that the elements of s,(t) are not necessarily orthogonal to signal
at scale s or to each other. The probability of error must account for this interference for each possible bit
pattern in the interfering signals and for each alignment of the matched filter relative to the other scales.
Lot 7, & be the set of bits on other scales that overlap with the signal on scale s and starting position k
and let P, (¢ |7, &) denote the probability of (bit) error for the kth position symbol at scale s, given all the
interfering bits. Note that it is necessary to express the probability as a function of the symbol interval k,
since amount of overlap of the matched filter on scale s with other symbols depends upon the position of the
matched filter relative to the symbols on the other scales. The conditioning on the bits may be eliminated

by
1
Por(e) = 77 2 PrslelTo), (18)
b

whete the sum is taken over all possible interfering bits and |Z| denotes the cardinality of the set Z. The
probability of error for symbols at scale s is obtained by averaging the probability of errors over the different

matched filter alignments,

aNe=s'

1
bole) = om=v Y Paawile):
=0




Finally, the overall probability of error is a combination of the probabilities on each scale, weighted by the
fraction of bits in the overall transmission that are sent on each scale,

N,+1
Ple)= > 2—171%,((3). (19)

Conditioned upon the interfering bits, the fading components of the matched filter outputs are Gaussian
and the vector

_ fs,l(k) +ng,1

z9,1(K) = Ca.1(K) } = [ fo2(K) + 742 J

A
klZ,8) =
v(ElZek) [ z02(k) = coa(k)
is Gaussian with zero mean and covariance

Ko(HT.4) = B KT v(kiZ) = | Jenfl) el ],

Assurning that ng(t) and £(t) are statistically independent, then

- | Ms11 TNg2 ra(k;lvllzs,k) T,(k;1,2|13,k)
"ﬂ("’L»*)"[n,,m n,,-z.z.J+[ra(k;2,1|L,k) ro(k;2,2T,) |

where the correlation of the fading components is
1 .
ro(kin,m|Z, ) = §E[r,‘,,(k)r8’m(k)|I,,k].

In the appendix, expressions for the correlation of the fading components are developed.

Let 8, x be the difference in angle between z, 1(k) and z,2(k). If the bits at interval k and k — 2° are
the same, then a correct decision is made if —7/2 < 6, & < 7/2. The probability of this event not occurring.
is {9]

Py r(elTs k) = Fyu(—7/2) — Fyx(m/2),

where F, ¢ is given below. If the bits at interval k and k — 2* are of opposite sign, then a correct decision is
made if 7/2 < 6, ¢ < 37/2 and the probability of error is

’)n.k(elzs,k) = Fa,k("/Q) - Fs,k(an/2) = Fa,k(ﬂ'/2) - Fs,k(_ﬂ./Q)'

The function F, ¢ is defined by [10]

/2 g=Eiu W,k sin(A®, x — ¢
= [ g S 2ns 0)

" Jorpa 4Am Wk =V, ksint — W,k cos(Ad, x — 1) cost

(20)

s k SINY — Ag g COSY }
1 — (ny.x cOSY + Ag x sin¢y) cost

where

Usk — Vyxsint — W, x cos(Ad, x — ) cost

E =
sk 1 — (15,6 COSU + A,k SiN¥Y) cOS

M'a,k = VP1,5,kP2 sk

Ad, , = arg[c, 2(k)] — arg[c,,1 (k)]

—

. 1
Usk = _2'(Pl.a.k + p2,6,k) Ve = §(P‘2,s,k = Pl,s,k)




_ Re{K,,12(k)} Mg = Im{ K, 12(k)}
Mok VKs11(k)Ks,22(k) T VK u(k) K, 22(k)

oo = lcs,1 ()2 pra = |cs2 (k)|
Lok T 9K, 11 (k) 25T 2K, 22(K)

For the binary differential signaling described in [9], substantial simplifications result in these equations.
However, for multiscale signaling, such simplification is not possible so the results presented below are
obtained by numerical integration of (20).

To compute Fj, x it is necessary to know the correlation matrix K,(k|Z, ) which requires knowing the
correlations of the fading components. Expressions for the fading components are given in (79) and (80)
in the appendix. Due to the complexity of the expression for the correlation of the fading component and
the number of potential interfering bits Z «, it is not computationally feasible to compute the correlation
for every possible interfering bit pattern. An approximation is therefore made to the probability of error
by averaging the value of Fjk obtained over 500 randomly generated bit patterns. (It was determined by
simulation that the probability of error calculated by averaging F, x obtained from 500 and 10000 randomly
generated bit patterns are basically the same. )

Plots of probability of error have been generated to demonstrate the performance of the wavelets. In these
plots. the correlation function is for a land-mobile fading channel, Re¢(T) = DJo(2rBpr). The particular
case of fg =0,tp =0,and S/D =10dB is shown in the probability of error plots. As a summary, there are
four general observations. First, for both small and large BpT, single scale wavelet signalings (signalings
only with the scaling functions) generally perform better than conventional (single-scale flat-topped pulse,
as reported in [9] ) signal. Second, there is very little change in the probability of error among single scale
wavelet signals with different support. Third, the penalty for using multiscale signaling, in term of increase
in probability of error, reduces for using wavelets with longer support. And fourth, the penalty from one
scale to next diminishes with the increases of the number of scales.

Figure 7 illustrates the probability of error for BpT = 0.01 for conventional and wavelet signalings..
In figure 7(a), wavelet signalings are with one scale. It can be seen that there is approximately a 1 dB
improvemnent of wavelets over conventional signaling. There is very little change in the probability of error
among D., Dy, Dg and Dg. Figure 7(b) illustrates the probability of error for four scales of multiscale
signalings. From the plots, one can observe that D4, D¢ and Dg perform just as well as conventional
signaling. However, there is a huge penalty for D, due to the increase in correlation among signals from
different scales.

Figure 8 illustrates the probability of error for BpT = 0.2. The basic observation is the same for figure
8(a) as for figure 7(a). In figure 8(b), it can be observed that the penalty is larger when BpT = 0.2 then that
is when BpT = 0.01 for all the families of wavelet except for Dy. Actually, D, with four scales is performing
better in channels with BpT = 0.2 then in channel BpT = 0.01 while all other wavelets are performing not
as good.

Figure 9 illustrates the probability of error for BpT = 0.5. A diminishing increment of penalty as
the number of scales increases is observed. In figure 9(a), while D, with single scale has around 1 dB
improvement over conventional signaling through out the range shown, all signals with one scale for other
families of wavelets start out with a better performance when Eg/Np is low and become having not as
good a performance then conventional signaling as Eg/No getting bigger. The crossing begins at around
Eg/No = 12 dB, first for Ds, then for Dg, and then for D4 at around Eg/No = 14 dB. The above order also
shows the increasing performance through different wavelet families. As for two scale signals, figure 9(b)
illustrates that there is a penalty for all wavelet signalings. D, is performing as conventional signaling, while
all other wavelets do not perform as well. Dg being a wavelet having a longer support then Ds suffers less
performance penalty. When the number of scale increases to three, figure 9(c) shows that as the increment
of penalty is the highest, D, becomes the worst performer. Now, the order of lower probability of error
becomes conventional signaling, follows by Ds, Da, Ds, then D,. As the increment of penalty diminishes,
the plots of probability of error for four scales signaling in figure 9(d) is nearly the same as that in figure
9(c).

From figure 10, it is observed that that the performance variation as the number of scales increases in
smallest for the Djg signaling.




3.2 Conclusions

As this report has demonstrated to this point, wavelet signals can be used for bandwidth efficient communi-
cation. Most of the benefits are obtained when single scale scaling functions are used for transmission. For
bandwidth consideration, the longer the support of the wavelet, the more bandwidth efficient. For signals
over the fast Rician fading channel, the performance does not seem to depend significantly upon the type of
wavelet used, with shorter wavelets providing only slightly more improvement than longer wavelets. How-
ever, if multiscale wavelet communication is contemplated, there is no change in bandwidth efficiency over
single scale wavelet communication. But for the fading channel, there is a penalty in terms of increasing
probability of error for multiscale signaling. This penalty decreases as wavelets with longer support are used.
At the same time, there is also diminishes with the increment of the penalty when the number of scales is
higher.

Because the improvement is only modest, there is motivation to consider signal designs which are optimal
for fading channels. Aspects of the analysis and design methodology in this regard are thus taken up in the
next Part.
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Figure 1: Probability of error for differential detection of BPSK for different fading bandwidth BpT (from
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Figure 7: Probability of error comparisons for BpT = 0.01

4 A Matched Filter Bound for Wavelet Transmission Through a
Fading Channel

In this section, an analysis is provided of the performance of multiscale transmission (wavelet modulation)
using the formalism of the matched filter bound. The matched filter bound [11, 12] is a lower bound on
performance, typically employed in a fading channel, which characterizes the detection capability of a single’
communication pulse transmitted in isolation, so that potential effects of ISI are neglected. Even though the
match filter bound (MFB) is an optimal lower performance bound over communication channel that may
not be practically realizable, it is a common performance measurement for communication systems [11, 12].
There are reasons for saying MFB is an optimal performance bound. First, it is assumed that all the
information about the channel is known, which is not feasible for a real fading channel. Second, transmitted
pulses are separated sufficiently so that no intersymbol interference (ISI) occurs. In other words, the error
rate is determined by assuming only one data pulse is transmitted.

In the present case, consideration is given to a set of pulses transmitted at different scales over a common
time interval, but otherwise isolated from other pulses. The MFB for multiscale wavelet pulse is derived
in section 4.2, In section 4.3, the MFB is presented for examples from Daubechies’ wavelet families and
compare with that of raised cosine. Section 4.4 presents conclusions and discussions.

4.1 Channel Model and Wavelet Transmission

As before, the signal is modeled as

N,+1
g(t) = Z by po (t). (21)
o=1

For the MFB analysis of this section, only one wavelet function pulse is present on each of the different
scales.
A baseband equivalent Rayleigh fading channel consisting of p paths can be represented as

P
c(t) =) euzi(t)o(t — ), (22)
i=1
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Figure 8: Probability of error comparisons for BpT = 0.2

where z,(t) is a slowly time-varying, zero-mean, unit variance complex Gaussian random process, 7; is the
delay of the ith path, and ; is the root-mean-square value of the magnitude of ith path [11]. Assuming that
z,(t) does not change within the duration of a single pulse, z; can be written in place of z;(t). The baseband
signaling pulse g(t) is sent through the channel (22) and corrupted by additive white Gaussian noise. At the
receiver, the received signal is

1 4
r(t) = Y cizig(t — 7:) +n(t). (23)
i=1
4.2 Derivation of Matched Filter Bound

To determine the data sent with multiscale signaling pulse, pass the received signal (23) through a bank of

matched filters as shown in figure 11. For each scale ¢, r(t) is matched to hp () = P ez pi(Te - (t—mi)],

then the signal is sampled at t = T¢ to give us the received signal rp,., where T¢ is the support of p¢(t).
Now. let us derive the error rate P(e) for the data transmitted in scale (. The value of rp, can be
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expressed as

where Z = [‘.1,
by bo--- 01
found that

and

T;
Tp, = /0 r(t)hy (T — t)dt
T, P P
= /0 [Z aizig(t — i) + n(t)][z o2} pg(t — 7j)ldt
prt =

N,+1

/ Zatzz Z bopo(t Tt)][z a;z;pZ(t_Tj)]dt
s
+‘/0 n(t)[zat = ‘ ]dt

N,+1

P
Z ZZ azzb/ po(t — Ti)pg(t — 75)dt}

o=1

=1
N,+1 p P
= by Z Z aiajziz] Ry, p (Ti — )+ Za / n(t)p; (t — 75)dt
24
= beZHM, Z + Z aj / n(t)p;(t — 7;)dt,
o=1
-, zp)T and Mo¢ = {moc,,}; mo¢,, = @ic] Rp,p (i — 7j). Assume b¢ = 1. Let b =

,bn,~1], and the set of all possible b be 3. Note that |B| = 2N: . Conditioning on b, it is

N,+1
E(rplb) = 3 6,27 My Z = Ey, (25)

o=1

, N
ol = —292” M.Z. (26)

So. the pdf of Tp. is

For E,. 2 0

(rpe — E 4)2
[——p-2—a-£(—p“]- (27)

i
f(rp(lb)zma exp
p¢

0
Plec|b) = /_ F(rpe [b)drp,

1 /0 (rp — El’c)2
= exp[———=———|dr
vzl B e
(28)

/ .,,,( "i;dz
\/271'

~Q {__vc_] ,
Op¢




For E,. < 0, by the same argument,

E
P(eclb) =1-Q [U—"‘] . (29)
74
Also, if b, = —1,
EP
Plec|b) = [ee] s (30)
¢ -Q [?—4-] otherwise
P¢

The average bit error probability given b can be found by averaging P(e;|b) over all E, :

o]
Prscas = [ PAectoln(Ep )y @)
Conditioning on b is eliminated by
1
P“WC = TB—l Z ane<|b' (32)
bes

Finally, as one bit is sent through each of the scales, the average error rate over the matched filter bank is

1 N,+1
Paye = N, +1 ; Pavec‘ (33)

4.3 Examples

In this section, the results of the previous section are used to derive the MFBs of some multiscale wavelet:
signalings for some practical fading multipath models. The channel models used are typical urban (TU)
and hilly-terrain (HT), which are used as benchmarks in the Pan-European Digital Cellular (GSM) standard
[11]. The wavelet functions used here are from Daubechies’ wavelet families, in particular, Dy, Dg and Dg
are used. where for D,, n is the number of coefficients used to generate the wavelet functions [1]. These
MESs will be compared with traditional square-root raised cosine signaling with excess bandwidth 8 = 0.35
as specified by 1S-54 [11]. The delay and amplitude profiles of the 6-path Rayleigh fading channel models
are listed in Table 1. Two different symbol intervals, one for IS-54 and one for GSM, are studied.

For 1S-54. the symbol interval used is 40us. Figure 12 illustrates the MFB for TU channel. From the
plots, it can be seen that all MFBs are nearly the same with wavelet signalings performing a little better
than raised cosine. Among different wavelet signalings, D4 has the best MFB, while Dg has a MFB which
is the same as that of the raised cosine. In considering the effect of different number of signaling scales, it is
seen that the MFB for two scales of Dy is similar to that of with one scale, while for Dg and Dg, two scale
signaling gives marginally better MFB over one scale signaling. Figure 13 illustrates the MFB for the HT
channel. Again, the MFB for single scale wavelet signalings are similar to those of raised cosine. However,
for all Dy to Dg. two scale signaling have MFBs inferior to that of single scale signaling.

For GSM. the symbol interval used is 3.8us. As the symbol interval decreases, it can be seen by comparing
figures 14 and 15 to figures 12 and 13 that there is a general improvement in probability of error. Figure 14
illustrates the MFB for TU channel. It can be seen that for one scale signaling, D4 has a 2 — — — 3 dB gain
over raised cosine. This gain decreases when longer wavelet is used. However, as the MFBs for HT channel
illustrated in figure 15, all single scale wavelet pulse perform the same as raised cosine. For both TU and
HT channels with GSM symbol interval, increasing the number of scales for wavelet pulse from one to two
worsens the MFB.

4.4 Conclusions and Discussions Regarding the MFB

In this section, the matched filter bound (MFB) of time-discrete multipath Rayleigh fading channels derived
in [13, 11] was extended to multiscale wavelet signaling communication. From the examples presented in
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section 4.3, it can be seen that for all cases, single scale wavelet pulses have better MFBs compare to raised

cosine.
However, one can also notice the shortcoming of applying MFB to evaluate digital communication systems
ion about the channel is

in fading channels. Due t0 the fundamental MFB assumption that all the informat
known, the MFB can be to0 good compare to actual performance As shown in the section 4.3, signaling with
shorter symbol interval performance better than signaling with longer symbol interval. The above finding
does not agree with the common belief that a multipath channel becomeé more frequency selective as shorter

symbol intervals are used, which can lead to a higher probability of error [14].

Table 1: Delay and Amplitude Profile of GSM Channels{11]-

TU model HT model
Path # Delay(us) Power Delay(us) Power
1 0.000 1.000 0.000 1.000

2 0.813 0.669 0.813 0.251
3 1.626 0.448 1.626 0.060
4 2.439 0.300 15.447 2.258
5 3.252 0.200 16.260 0.177
6 4.056 0.134 17.073 0.122

5 Amplitude Vs Phase Modulation

The waveform designs prescribed above are linear modulation, wherein the signal amplitudes are modulated
dern communi-

band functions and information {s carried in the amplitude variations. In mo

by a set of base
cations applications, such as many telemetry channels or channels in which there are nonlinear amplification
als which convey the information

elements, however, there is frequently interest in constant-envelope sign
via phase variations. Accordingly, some effort was expended to determine how t0 obtain the attributes of -

shift- and scalo-orthogona]ity using phase—modulated waveforms. HOWeVer, no analytic method has been

determined yet which yields effective design procedures.

¢ Spectral Adaptivity

There are entire families of wavelet functions, each with stightly different time and spectral
ft- and scale—orthogonality. An application of this wealth of waveforms is that

but all of which possess the shi
waveforms may be tuned via a parameterization so that the signal spectrum provides 2 better degree of match
mmunication

to some specified spectrum. This moves implememation closer toward the concept of digital co

as that mode of communication where the cransmitted spectrurm matches the channel, rather than being
mportant results of information

sitmply a function of the spectrum of the message signal {15]. One of the 1
nt specifying how transmitted power should be allocated in the spectrum

theory is the water-filling argume
as a funcuon of the noise spectrum of the channel (16, 17). Tunable wavelets provide a mechanism for

approaching this optimal allocation.
This concept has been developed up to 2 point in the Masters thesis of Krishna Noru at Utah State

University. Since this is available through conventional ch
be found [18].

characteristics,

annels, & citation 18 provided wherein details may
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Part 11
Fading Channels

7 Background and literature review

At present, wireless communication, mainly cellular, systems are only able to provide low speed data com-
munication at error rates that are far from acceptable in wireless network connections. This is because these
systems are based on technology distant from theoretical limits [19]. One of the main reasons for this draw
back in technology is the hurdle of fading multipath phenomenon [20]. For example, the cellular system,
GSM, we are using today, are designed more to circumvent the problems imposed by the fading multipath
phenomenon than actually solving them. To avoid a too rapid fluctuation of the received signal power (caused
by fading), specific signaling rate is chosen {according to the rate of fading) so that the received signal can be
regarded approximately constant over a data symbol interval (slow fading assumption). At the same time,
the signaling rate can not be too high as that will cause severe problems with Inter Symbol Interference, ISI
(frequency selective due to multipath phenomenon) [21]. However, the good thing is there is an indication
that high-speed reliable communication is possible if the user is willing to make the most of what the media
would give him [22]. Because of this belief, considerable research effort has been devoted in the area of
multipath fading channel communication for the past five decades [23, 24, 25, 26, 27, 28, 29, 30, 31]. This is
because fading multipath phenomenon is unavoidable for high-speed wireless communication.

Usually fading muitipath channels are merely called fading channels [14]. However, there are actually
two basic degradations: i.e., multipaths and deep fades. The multipaths, which results from reflections,
that cause transmitted signals being superimposed at the receiver. When the arrival time of the different
rays are of the same order of magnitude as the duration of the transmitted signals, successive signals are
smeared together, and cause ISI. The span of the excess delay is directly related to the distortion rate
of the channel to the signal according to the difference in frequency. Frequency selectiveness is the term
we use when the distortion rate changes a lot for a small variation in frequency. When the arrival time-
difference is comparable to the period of the carrier frequency, another effect results, i.e., the deep fades.
The superposition of many waves of different phases give a spatial interference and cause extremely low
signal power. 1eep fades can also be caused by relative motion between the transmitter and the receiver,
which also results in superposition interference that is called the Doppler Effect {32]. Of course, deep fades
can also be caused by the continuous physical changes of the transmission media. When the interference
and fluctuation are a lot more rapid compared with the signaling rate, fast fading occurs.

A lot of time, fading and multipath phenomenon are coming hand in hand. However, there are situations
like stationary communications, i.e., both the transmitter and the receiver are not moving, where the occur-
rence of multipath transmission is the main cause of degradation of communication quality; and there are
also situations like communication between high speed vehicles at an environment with no major reflection
surfaces. where the main cause of degradation is fading. To make the multipath fading channel problem to
be more tractable, it is helpful to consider only the multipath aspect or the fading aspect alone. In this part
of the report, only the fading aspect is studied.

7.1 General Fading Channel Model

Fading channels were first modeled as large number of “scatterers” located at random points within the prop-
agation path in 1950s and 1960s [25, 27]. This idea was primarily applied to over-the-horizon (troposcatter)
communications covering a wide range of frequency bands. To reach beyond the horizon, clouds of particles
in the troposphere were used as reflectors for the radio waves. The differences in path length between the
large number of scattered waves give rise to Rayleigh fading if there is no dominant direct component [33].

The ground work of modeling fading channels mathematically was laid by Price [23, 24]. For the following
half a century, there were tremendous amount of contributions to this field. In a recent survey paper written
by Biglieri, Proakis, and Shamai, more than five hundred entries of citations reporting the state-of-the-art
achievement in the research of fading channel were included in their reference [31]. By considering the
absence of Prices’ papers in their citation, how many more others were “missing”! Among those that were
not included in their citations, there was a paper written by Bello who introduced a simple way to model

25




the fading phenomenon with the notion of a wide-sense stationary uncorrelated scattering (WSSUS) [26].
Uncorrelated scattering means the attenuation and phase shift of the channel associated with different path

delay are uncorrelated.
A widely accepted mathematical modeling of fading channel nowaday is presented in Proakis’ book [30].
A fading channel is be viewed as a continuous time-variant filter with a baseband equivalent impulse response,

e(7;t), (34)

where ¢(.;.) can be complex, T is the delay in response and t is the time variable. If a signal s(t) is sent
through this channel with Additive Gaussian White Noise (AGWN), we will have at the receiver side,

r(t) = /C(T; t)s(t — 7)dr + n(t), (85)

where r(t) is the received signal and n(t) is the AGWN.
Assuming wide-sense stationary, the autocorrelation function of c(r;t) can be defined as

1
@c(m1,72; AL) = —2-E[c'(7'1;t)c(1'2;t + At)]. (36)
With uncorrelated scattering,
1
dc(T1; AY)o(1y - 1) = §E[c' (r1;t)e(mast + At)]. 37)

Setting At = 0, the expression ¢¢(AT;0) in (37) is usually called the multipath intensity profile or the delay
power spectrum of the fading channel. Further define T;, to be the length of the span of ¢c(A7;0) that is
essentially nonzero, and call it the multipath spread of the fading channel.

Now. if we take the Fourier transform of the channel impulse response,

Cifi) = / c(rit)e™ "I dr. (38)
The corresponding autocorrelation function, with WSSUS, is
1
ocfr, fiAt) = SE[C(fi;)C(fait + At)]

1 .
=3 //E[c'(n;t)c(rg:t+ At)jerthm—fara) gr gr,

= //¢c(T1;At)5(Tl — mp)e AT g iy -

= /¢C(TI; At)ejz"(fl "h)ndrl

= [ oc(mianesarman
= pe(Afi A0

Setting At = 0, one obtains ¢c(Af;0); it is the autocorrelation function in the frequency variable. Define
the length of the span of ¢c(Af;0) that is essentially nonzero as (Af)c. Usually (Af)c is denoted as the
coherence bandwidth, which is a measure of the frequency coherence of the fading channel. To illustrate
this idea. assume a signal with a bandwidth less than (Af)c is transmitted through this fading channel.
As all frequency components will be affected essentially similarly by the channel, this channel is said to
be frequency-nonselective. However, if another signal with a bandwidth larger than (A f)¢ is transmitted
through the same fading channel, different frequency components will be affected differently by the channel.
At this time, the channel is said to be frequency-selective. In this case, the signal can be severely distorted
by the channel. Another useful result due to the fact that ¢c(A7;0) and ¢c(Af;0) are Fourier transform
pairs,

(Af)c ~ % (40)
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To study the time variation of the channel, return to ¢¢c (A f; At) of (39). Setting A f = 0, one essentially
obtains the autocorrelation function of the channel in time averaging through all the different frequency
components. Now, the length of the span of ¢¢(0; At) that is essentially nonzero is defined as (At)c, which
is called the coherence time of the fading channel. So, for a digital communication system, if the signaling
period is shorter than (At)c, it may be assumed that the channel is essentially constant for individual signals
and the situation of a slow fading occurs. On the other hand, if the signaling period is longer than (At)c,
it may no longer be assumed that the channel is constant for individual signal, and fast fading situation

occurs. ‘
In practice, (At)c is very difficult to be measured directly, so, a related function is employed. This new

function is called the scattering function of the fading channel, and it is defined as
S(r;)) = / / bc(Af; At)e=2mmAfe2mAAL A f dAt, (41)

where 7 is the time delay, and X is the Doppler frequency as the channel time variation is usually caused
by physical motions of the media, the transtitter, and the receiver. The scattering function of the channel
provides us with a measure of the average power output of the channel. When 7 = 0, the length of the span
of S(0;\) that is essentially nonzero is called the Doppler spread By of the fading channel. Besides, the
following relationship exists between the channel coherence time and the Doppler spread,

(At)e = Bi,,' (42)

Time variation autocorrelation function, ¢¢(0; At), can be obtained from Sc(A) = S(0;\), called the
Doppler power spectrum of the fading channel. Some of common Spectra and autocorrelation functions are
listed in Table 2 [34, 35, 36, 37, 9].

Table 2: Spectra and autocorrelation functions of fading process

Denotation Spectrum Sc(A) Autocorrelation Function R¢(7)
1. Rectangular 2—,—;; |\l < Bp Kii;_’;f—ggfl

2. Gaussian Kexp(—g%;)/\/;BD K exp[—(nBpT)?]

3. Land Mobile ;(_XQ_:_['%W A,JO(QWBDT)

4. First-order Butterwofth "—B—m:’f‘\ym K exp[—27rBD|7'|]

Note: Jo(+) is the zero-order Bessel function of the first kind and K is a constant.

7.1.1 Categories of degradation

Different fading phenomenon introduces different degradations to communication systems. Those degrada-
tions are summarized in Table 3 [14].

7.1.2 Statistical Models

Let us revisit (35), i.e.,

r(t) = /c(r; t)s(t — 7)dr + n(t).
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Table 3: Categories of degradation according to different fading phenomenon

Frequency-nonselective | Frequency-selective | Slow fading Fast fading
loss in SNR ISI distortion, low Doppler, | high Doppler,
pulse mutilation, loss in SNR PLL failure,
irreducible BER irreducible BER

By Parseval’s relation,
r(0) = [ CUEDSNS I df +n(o) (43)
Assume there is a frequency non-selectiveness (that C(f;t) = C(0;t)), and '

) = [ CUOS(Edf +n(t

— C(0:1) / S(f)e? tdf + n(t) (44)
= C(0;t)s(t) + n(t).

The transfer function C(0;t) for a frequency-nonselective fading channel may be expressed as
C(0;t) = a(t) = a(t)e~7¢® (45)

where the random process a(t) represents the envelope and random process 8(t) represents the phase of the
the transfer function. In this case, the channel is also called a multiplicative fading channel. Please note
that a multiplicative channel can be both fast and slow fading. For different fading channels, 8(t) is always
modeled as uniformly distributed over the interval (-, 7). Conversely, for any fixed value of t, a(t) can
acquire different statistical distributions, from which different fading channel is named after. Among common
distributions for a(t) are the Rayleigh distribution, the Rician distribution, and the Nakagami distribution.

7.2 Literature review

All researches in engineering have two main goals: 1. understanding and 2. improvement. Research in fading
channel is not an exception, two characteristics are clear in all of the works: 1. finding the ultimate performing
bounds for fading channel (understanding), and 2. finding ways to combat fading effects (improvement). An
interesting observation is at the early days of the study of fading channel, most of the effort was devoted to
the improvement side of research, only until later, more attention was attributed to understand the matter.

The history of fading channel studying can be roughly divided into three periods. The first period spans
from the early 1950’s to late 1960’s. The driving force behind the research about fading channel in this
period was mainly the development of long-distance troposcatter communication [23, 24, 38, 33]. During
this period, a tremendous effort was invested to collect real data to illustrate the fading channel, and some
practical mathematical models were built [23, 26]. The single most important idea for combating fading
phenomenon, i.e.. “diversity”, was also formed in this period [39, 40, 41, 42, 43, 44, 45, 46]. Even a lot
of work was performed in the area of detection, the resulting systems were not reliable enough for some
computer communication applications. This was the main reason of the introduction of coding theory to
signaling on the fading channel [28].

The second period spans from early 1970’s to mid 1980’s. During this period, there was a drop of the
interest in fading channel communications, maybe because of the high demand in the research of wire and
optical communications where fading was not an important issue. Even so, there was still continuous effort
in the Information and Coding Theory aspect of fading channel researches [47, 48, 49, 50].
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The third period spans from the mid 1980’s to present. During this period, there has been a huge increase
of scientific activities in the area of fading channel research. The main driving force is the tremendous increase
in the demand for personal mobile wireless communication, of which the following references typify aspects
of implementations. Many new implementation schemes have been derived and reported. These approaches
can be further subdivided into three sub-classes, i.e., diversity, detection and estimation, and combined

methods.

1. Diversity: the application of the idea of diversity exists virtually in every branch of research of fading,
either implicitly or explicitly. A basic motivation for diversity is that, under a fairly general condition, a
channel affected by fading can be turned into an AWGN channel by increasing the number of diversity
branches [46, 51]. There are mainly two types to diversities, i.e., time and space diversities. Time
diversity is usually achieved by using some kind of rearrangement of the signaling [52], or by means of
coding [53, 51, 45, 54]. Space diversity can be achieved by using multiple antenna at the transmitter
and/or the receiver side [55, 56, 57).

2. Estimation and Detection: new twists to adopt old techniques to fading situations [58, 59, 60]. Ap-
plication of diversity on the design of detector and estimator [61, 46]. And a lot of reports in the
application of equalizers, besides, for a lot of time with robust adaptive algorithm for fast fading

[62, 63, 64, 65, 66, 67, 68, 69].

3. Combined methods: Information theory and space diversity [70]. Adaptive CDMA signaling [71]. And
the application of channel coding [72, 73].

8 Analysis of Multiplicative Fading Channel Model

This section considers the asymptotic behavior of a fading channel as the rate of fade increases compared
to the support of signaling function when a correlation filter is employed. Because the study deals with the
behavior of the channel as it is fading very fast compare to the length of the signal, it can be assumed that
the support of the signal is divided into multiple chips and the signal is faded independently in each of those
chips. This will greatly simplify the development of the arguments, and as the number of chips is large, it
should reflect some interesting channel models.

8.1 System Model

The systemn model is presented in figure 16. The binary information a = {1, -1} is carried by the signal
g(t) = as(t). where supp(s(t)) = [0,7]. Then g(t) is sent through a multiplicative fading channel with a
multiplving factor of a(t), with a being positive and Rayleigh distributed. Also, the signal is corrupted by

additive Gaussian white noise n(t) with variance o = =2 At the receiver side, the received signal is first

multiplied by s(t). then integrated through the support of s(t) and sampled at T to giver. If r >0 ais 1,
else a is —1. The goal is to evaluate the error rate versus the transmission signal-to-noise ratio. To simplify

the calculation, it is assumed that s(t) is an unit energy, i.e., /sz(t)dt = 1. So, the detected signal r can

be expressed as
T «
r =/ a(t)s®(t)dt +n (46)
0

where n is the noise component.

For fast fading situation, divide the time interval of the support of g(t) into multiple subintervals, and
assume the channel varies independently in each subintervals. Within any of these subintervals, it is assumed
that the channel fades slowly, i.e., the multiplicative factor o;(¢) is constant in each subinterval, so a; may
be employed in place of a;(t). The above idea is illustrated in figure 17. With the above assumption, (46)

can be expressed as




where
tig1 9
F= ;7 and n = / s°(t)dt
}; n R

8.2 Analysis Approach I

Consider that the interval [0,7] is divided into N chips. Then the following distribution functions for the
received r hold:
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Because {a}s are independent, it follows that
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Let Wi = Z —a, Then =Wy = %Aia N+ Wn_1, and Wy = 0. Also, note that for Rayleigh distri-

2
bution, the density function is fa(a) = -ﬁa-e“’z/ ? where 2 = E(A?). Changing the order of integration as

illustrated in figure 18, (47) can be rewritten as
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it follows that for k > 1,
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8.2.1 Two Chips

For the case of N = 2, i.e., there are two fading chips for ¢ € [0, 7], the probability of error is
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From calculations on the individual parts,
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Similar techniques can be applied to cases with higher number of fading chips. However, when there are
more than two chips, the calculation of {Ax} will be tedious and difficult to trace.

8.3 Analysis Approach II

Another approach to solve the problem in finding the probability of error by using the same system model
described above is to work on the characteristic functions of the distributions. For the density function
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with 7 = 3, r;, where r; = an;, the characteristic function of the distribution of # can be found by first

finding the characteristic functions for the distribution of r;. The density function for r; is

fa(ri) = %m(%),

and the characteristic function is
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Assuming independence amcng the fading chips, the characteristic function of the distribution of 7 is

equal to the product of {¥g, (jv)}, i.e.,
Y(iv) = [] Y. G)-

So, for r = 7 + n, it follows that

1
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which is similar to the results obtained before. In addition, the probability of error given 7 is

Averaging over all possible r,
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(49)

Equation (49) can only be evaluated numerically. The procedure is: first, obtain the discrete samples
of ¥(jv): second, apply the DFT to get the discrete samples of fg(7); third, obtain an approximation of
fr(r) through the Interpolation(] function of Mathematica. Because of this, it is expected to have higher

calculation error at two ends of interpolation.
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8.4 Experiments and Discussion

To compare the findings with previously known results for the one-chip case, the distributions described in
Proakis [30] were used. However, since Proakis did not indicate the parameters of the Rayleigh distribution,
i.e., 2, there are some difficulties in reproducing his plots. On the other hand, (48) is the same form indicated
in Proakis, so it is believed that the results are the same as in Proakis. Approach I was established as the
reference and plots from Approach I were used to check the reliability of the results obtained from Approach
I1. Another reference used was the direct evaluation of (47) for single chip case. Figure 19 shows the results
from the method for a single fading chip with 2 = 1 mentioned above. It can be seen that they are the same.
For two chips with equal @, i.e., @ = 1, Approaches I and II only agree up to S/N = 15 dB. This is shown
in figure 20, where figure 20(a) is for the result from Approach I while figure 20(b) is for the result from
Approach II. Figure 20(c) shows both plots on top of each other. The deviation of the result of Approach
II from Approach I, as mentioned above, is due to numerical and approximation error. It can be observed
that this error is more severe for high signal-to-noise ratio. At present, it may be assumed the above fact is
generalized for c23es of higher number of chins.

Plots of probability of error against signal-to-noise ratio is presented in figures 19 and 20. Since the
equation of probability of error were derived for single and two-chip cases, only the results from Approach
I are used to formulate the observations and draw conclusions. So, all plots presented in the following are
obtained from Approach II.

First, plots of density function for cases of different number of chips is shown in figure 21. In figure 21(a),
{n.} is set to {1}. In figure 21(b), {n:} is set to {0.5,0.5}. In figure 21(c), {n:} is set to {0.25,0.25,0.25,0.25}.
In figure 21(d), {m:} is set to {0.2,0.2,0.2,0.2,0.2}. It can be observed that the distribution become more
and more Gaussian with a decreasing variance. In other words, with the model, a very Fast Fading Channel
is equivalent to an additive Gaussian Channel. All these plots are obtained with 2 = 1. Please note that
the value of Q affects the mean value 7 of the distributions. For fast fading, ¥ = 1 means simple Gaussian
Channel, 7 < 1 means a Gaussian Channel with depreciation due to fading effect. However, ¥ > 1 means an
unlikely Gaussian Channel with performance gain from fast fading!

9 Aspects on Optimal Filters in Multiplicative Fading Channels
Without the Assumption of Synchronization

The performance results from wavelet or multiscale signaling through a channel have not been too exciting.
The results may be summarized by observing that the performance of multiscale signaling is comparable to
that of other more conventional methods. From this section onward, a more generalized problem contem-
plated. Rather than postulating a waveform (such as a wavelet) and determining if it performs well in a
fading channel, the question of finding what the optimal transmitter and receiver signals are explored. In
the discussion here, some of the basic investigations are presented. Building on the approach here, other
constraints can be added, such as the desirability of having the signal be localized spectrally.
For the channel model

r(t) = a(t)g(t) + n(t),
where n(t) is a AWGN, and where some statistic of a(t) is known, one would like to consider the problem

of designing a filter matched to a(t)g(t), then shaping g(t) to obtain the maximum ~ ratio possible. That

is, it 15 destred to find

t)g(t)h(t)dt|?
(i) —  max I (GLIOLIOL 50)
N/ max 9(t) ht) No
Slgt)Pde=1 L £ [a(t)|Pdt=1

S
As = is maximized among all possible g(t), this optimal filter problem will also be treated as a signal design

problem.
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The difficulty involved for solving the above optimization problem is that solutions must be obtained
to integral equations, which depend on the channel statistics. Instead of working on the integral equations
directly, one can use discrete approximations to reduce the complexity of (50). As the sampling interval is
decreased, an asymptotic solution is approached. The discrete-time equivalent of (9) is

r[k] = alklg[k] + k). (51)

This discrete filter optimization problem is actually an an eigenvalue maximization problem, which is
classified as eigenfilter optimization problem. Let f[k] = a[k]g[k] and let R; be the autocorrelation matrix
of f, and let h, normalized to h'h = 1, be the desired filter. Then,

y[k] = h¥ f[k].

The above system model is presented in figure 22.
For this system,

h¥ R;h
NohHh
hH R;h

No

s
~

The above Rayleigh quotient is maximized by setting h = x; with x; being the eigenvector of Ry corre-
sponding to the largest eigenvalue A; such that Ryx; = A;x;. For a given Ry, the maximum N possible is
Al

‘\'() ' . .

The optimization problem (50) can be approached by examining the random process afk] with autocor-
relation R,, and finding the signaling pulse g[k] with autocorrelation R, such that the largest eigenvalue of”
R; = R, o R, is maximized, where A o B = {a,;bi;} is the Hadamard product of matrixes A = {a;;} and
B = {b,,}. Equation(50) may be re-written to reflect this observation, i.e.,

__S_ - eig(Ra o Ry) }
(N ) max "ol { No ' (52)

T lglk])*=1

In the above expression, eig(A4) returns the largest eigenvalue of A.
By observing that autocorrelation matrixes are Toeplitz matrixes, and Hadamard product of Toeplitz
matrixes is also Toeplitz, Szego’s Theorem can be used to help us solve the above optimization problem.
Szego's Theorem states that for R, being an mth-order Toeplitz matrix, and S(w) being the Fourier
transform of the coefficients of R,, and the eigenvalues of R,, are A, x, then,

1 n-1 1 A
o P2 !
Jim ~ > (k) 5 ). Sk, (w) dw (53)
k=0
where | can be any positive integer [74].
For example, if r = {r_n,7-m+1, - , 70,71, ,Tm}, where r, = 0 for |k| > m, then the matrix R, is
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of mth-order and

(9 T—1 r_2 tee T—m |
T1 To r-1 r—2 T T—m
™Tm Tm-1 Tm-2 - To T-1 v Tem
R, = Tm Tme1l Tm—2 °°° o r_1 v T—m (54)
T'm Tm—-1 Tm-2 °°° To r—1 - T—m
Tm L To T—1
L . Tm : v T To |
The Fourier transform of the coeflicients of R, is
m
Sr, (W)= > ree TR (55)
k=—m

From Szego's Theorem, the distribution of the eigenvalues of R, must be very close to that of Sg, (w) as
the equality holds for any positive integer [. In other words, if entries of R,, may be altered, the values of 7y
should be changed in a way that maximizes the maximum value of S(w). Observe from (55) that

Sra @) <1 3 reei| |
k=—m (56)

Now. consider how to find R, for some given R, such that the largest eigenvalue of their Hadamard
product is maximized. As both R, and R, are autocorrelation matrices, they both are in the form of (54).
It can also be assumed that the main diagonal of both matrixes are ones, and the off-diagonal entries are with
values less than one. Expressing the matrices in polar form, i.e., Ry = {|ai;le’®} and R, = {|gi le/%i},

one ohtains

Sheer, (@) = Y (lakle’™|gele’®*)e™ 5,
k=-m

which is maximized when ¢ = -8, and |gx] = 1. At w =0,
m
Skaor,(0) = Y ol
k-—m

As all the entries of Ry are less or equal to one, the above result is the best that can be achieved.
The following observations may be made:

I. Given a fading channel for which the magnitude is varying in time as function a(t) with autocorrelation
matrix R, the signaling function g(t) should have an autocorrelation matrix Ry, which is in the

conjugate direction of R,.
2. |gk| = 1 should be chosen to maximize the largest eigenvalue of the Hadamard product Ra o Ry. This

implies g(t) has a autocorrelation function with constant magnitude, which is not very practical. On
the other hand, (56) indicates that there is no benefit to require g(t) has an autocorrelation with a

support longer than that of a(t).
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3. As some of the g; must be such that |gi| < 1, they should be allocated to those small |ax|s to keep

m

Z |akgk| as large as possible.

k=—-m

4. As the above guidelines only concern about the autocorrelation function of g(t), which is related to
its power spectrum, there is freedom to design the signal. The above understanding of signal design
criteria will be helpful for orthogonal signal set design.

5. The optimal filter is the eigenfilter corresponding to the largest eigenvalue of matrix R, o R,.

n(t) h(t)

g(t) —— a(t) + X - J ——/

Figure 16: System model.

e e mm e e mm et e tr - v e ——————

Figure 17: Independent fading chips.
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Figure 18: Change the order of integration.

10 Optimal Signal Design for Multiplicative Fading Channels With
the Assumption of Perfect Synchronization

For a multiplicative channel, a(t) (frequency non-selective) with AWGN, the received waveform when g(t)
is sent can be presented as

r(t) = a(t)g(t) + n(t), (57)

where n(t) has a two-sided PSD of %‘1 and the autocorrelation function of a(t) is known. If the received
waveform is passed through a correlation detector, the output of the detector consists of two separated parts
at the instant of detection, i.e., the signal part and the noise part, which can be presented by the following
equations,

re = / a(t)g(t)h(t)dt and  rn = / n(t)h(t)dt. (58)

In this section, some preliminary results are presented that lead to the design of optimal signaling
waveforms and optimal receiver waveforms, when the correlation function of a is known. Since these results
are preliminary, the actual waveforms resulting from these designs are not presented (they are the topic of
ongoing study).

One would like to study how to characterize g(t) and h(t) that for given R,(7,A) = E(a(r)a(})), the
autocorrelation function of a(t), the signal to noise ratio at the receiver is maximized. One further requires
that g(t) and h(t) to be normalized, i.e.,

G(s):/sz(t)dtzl and  H(h) =/h2(t)dt= 1. (59)

Maximizing the signal-to-noise ratio is equivalent to maximizing the ratio between the variance of r, and 7.
Because of (39),

E(r2) = —A-;E (60)
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Figure 19: Comparing difference approach for one chip case
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(a) Density function for single chip case

.5

(b) Density function for two-chip case

-
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(¢) Density function for four-chip case

(d) Density function for five-chip case

Figure 21: Density functions for different number of chips with Q =1

n[k]

h —ui

Figure 22: Noisy signal to be filtered using an eigenfilter h [74].
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So, what one really need to do is to maximize the variance of r,, which can be represented as the following
functional

E(?) = / f a(r)g(r)h(r)a(Ng(Wh(\drd)]
= / / Ela(r)a(N)]g(rh(r)g()h(\)drdr -

= / Ra(r, Ng(r)h(r)g(\h(\)drdA
=F(s, h).
We use the method of Lagrange multipliers to maximize F(s, k), i.e., we want to solve the equation
VF(g0,ho) = 11VG(g0) +72VH(ho), (62)

where go, ho € L* (Lebesgue integrable) are che extreme points in the domain of F.
Now, for e € R,V € L2,
F(go + Evyh()) — F(go, h’O) (63)

o i
= F(go,ho) -V = 1F(go,ho) -V = lim > .

Furthermore,

F(go + €V, ho) — F(g0, ho)
- / / R (7, ) (g0 + €V)(T)ho (7) (g0 + €V)(\ho(NdrdA — F(go, ho)

=/ Ro (7, \{eV(7)g0(A) + €V (A)go(T) }ho(T)ho(X)dTdA

= [ [1Ra(r3) + Ral0, lso( oA o)V () (64)
= [ { / QRa(T,)\)go(f\)ho(/\)d/\} ho()V (r)dr
R — ,
=0, F(go, ho)(1) = L(1)ho(7).
Similarly.
2 Flgo,ho) = 82F (g0, ho)(7) = L(r)go(7). (65)
So, (62) imphes
L(t)ho(T)} _ [27190(7)
[L(T)QO(T)} = [%zho(T)] (66)
= |L(1)] =2/|mv2l and  |go(T)| = < g% ) |ho(T)]- (67)
Because of (59), it must be the case that
vl =2l and |go(7)| = |ho(T)|- (68)

That means g(t) and h(t) must be similar to each other up to the same magnitude at the extrema of F(s,h).
The following observations may be made:

1.
L(X0) = 0 = go(Xo) = ho(X) = 0. (69)
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Flgo,ho) =3 [ LONgo(ho(AdA

= [ Vil g (70)
=V I"/l’h'-

3. From Tricomi [75, Chapter 3], if R, is symmetric, then {¢x}, the collection of eigenfunctions of R,
ie.,

Eedn(r) = / Ra (7, NN, (71)

where & is the corresponding eigenvalue (distinctive for different k) which satisfies the orthogonality
condition

(6n, b4) = / n(r)ou(r)ydr =0 i h#£k. (72)

In addition, span({¢x}) = £?(a, b) with (&, b) being the support of R,.
Now, let f(A) = go(A)ho(A) = 2 axde()), then

L(T) =/2Ra(‘r, A)f(A)dA

= [2Ra(r N T are0r (73)
=Y arbrn(r).
Because ¢k are orthogonal and & are distinct, one should be able to characterize a, so that |L(r)| =

constant.

When the above principle of (68) is applied to a discrete equivalent of a multiplicative fading channel,
one can find that optimal signals with their corresponding filters are delta functions. This makes sense
hecause if there is a variation with the channel, one would like to allocate the transmission power to a very
short instance of time so as to reduce the channel uncertainty. This also agrees with the finding of many
researchers [31]. However, delta functions are not very practical for communication engineers. In this case,
one need to modify the cost function in the Lagrangian (62) to require the frequency span of the signal g(t)
being concentrated in a small range.

11 Conclusion and Suggestion for Further Study

In this part of the report, two methods of calculating error rate for a multiplicative fading channel by
assuming independent fading chips were presented. The channel statistic was also studied as the signal
becomes long compared to the fading rate of the channel. It was observed that Rayleigh fading becomes
more and more like a Gaussian fading with a decrease in variance. In other words, the fading effect is more
and more similar to an increase in Gaussian noise.

By assuming the fading magnitude being of the same sign, it was shown that the optimal filter for any
fading channels are matched filters that matches to the signaling function used. Moreover, the performance
is independent to the signaling function. However, when the above assumption is lifted, the change of sign of
the fading magnitude will definitely make matched filters suboptimal. As mentioned in [76], many researchers
use matched filters on fast fading problems believing that matched filters are the optimal solution for this
situation. The derivation in this report should be helpful to clarify the above misconception.

The correlation filter idea may be generalized to eigenfilter, which is the optimum filter for any random
signal when the autocorrelation matrix of that random signal is known [74]. After employing the notion
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of discrete observables suggested in [76], it is found that the filter design problem is unified with signaling
function design design problem, and they are totally related to the fading channel statistic. This should give
part of the explanation to Hansson’s observation about the probability on the fast Rayleigh fading channel is
highly dependent on the shapes of the modulator waveforms [76]. The design procedure for fading magnitude

function a(t) with autocorrelation matrix R, is:
1. for the case of without the synchronization assumption,

(a) determine g(t) such that, its autocorrelation matrix R, is pointing at the conjugate direction of

m
R,, with entries that will keep Z lakge| as large as possible.
. k=—m
(b) design filter h with value equal to the eigenvector of matrix R, o R, corresponding to its largest
eigenvalue.

2. for the case of perfect synchronization,

(a) require g(t) to be localize in frequency domain.
(b) construct a discrete equivalent of (62) and solve for optimal g(t) and h(t).

As the above optimization criteria only involve the autocorrelation function used for a given fading
channel, there is room to develop good orthogonal set of signaling waveforms for fast fading channels. Of
course, studies should be carried out about the affect among the orthogonal signal detectors because all of
the signals will be designed to match the channel characteristic. In other words, the maximum difference in
direction that the different eigenvectors point to corresponds to different signaling waveforms should be a
major topic of study. This difference in angle is critical in determine the error rate.

Appendix A Computation of the Variance Components

The fading component of the matched filter output can be written as

N,+1 (k+qo)T
rea(k) = b, / o(t — kT)E(t)p, (t — iT, —tp) -
1(k) Z Z i ] Ps )E(t)Po ( D) ()

explj2n(fpt — (fo + fp)tp)ldt, ke 2°Z.

For purposes of computation, it is necessary to limit the range of i in the summation in (74) to those symbols
in s,(t) which overlap with the matched filter integration interval [kT, (k + ¢,)T|. If the matched filter for
the kth symbol on scale s aligns with the start of a symbol on scale ¢, the matched filter is said to be
scale-aligned. Otherwise, the matched filter is non-scale-aligned. A matched filter interval for scale 1 which
is scale-aligned with scale 2 is shown in figure 2(b) , and a non-scale-aligned matched filter interval is shown
in figure 2(c). If s > o, then the matched filter on scale s is always scale-aligned with scale o. Otherwise,
the alignment depends on the value of k: If £ = 0 mod 29" then the matched filter is scale-aligned. We
also distinguish between those symbols that began before the beginning of the matched filter interval —
which are termed prior symbols — and those that begin after or at the same time — which are termed post
symbols. The limits of summation for 7 in (74) are obtained by determination of how many signals in the
summation are prior to the matched filter interval starting at kT and how many are post to the matched
filter interval.

Consider first the number of prior and post symbols overlapping the matched filter when it is scale-
aligned. For a matched filter of length ¢,T, there are ¢ — 1 prior symbols on scale ¢ intersecting the same
time as the scale s signal. The number of post symbols u on scale o that overlap the matched filter is such
that

gs > (u — 1)2°,

45




where u — 1 represents the number of post symbols excluding the symbol with the same starting time as the
matched filter. Since all quantities are integers, this is equivalent to

gs— 12> (u-1)2°.

The total number of post symbols, including the one with the same starting time, is therefore

-1 28427 -1
we |t = |2, (75)

where |z is the greatest integer not greater than z.

When the matched filter is non-scale-aligned, there are ¢ prior overlapping symbols. The number of post
symbols is determined as follows. Let ¢ € 2°Z be a number between 0 and 27 representing the starting index
of the matched filter on scale o relative to the starting time of the nearest prior symbol. The number of
symbols u on scale ¢ that overlap the symbol of length g, starting at ¢ is such that

gs +1> u2°
or

q,+i_12u20

g2 +i-1
R T

In the case that 7 is not in the range from 0 to 27, this may be written as

w {q2’+ (i mod 27) — IJ

so that

o (76)

In (74) the index of summation must be changed so that the index ¢ = 0 corresponds to the first post
signal. To this end, we introduce the notation (k), to represent the smallest integer > k that is a multiple
of 2%, For example,

(k)o =k

(k)1 = k if k is even
7Y k+1 ifkisodd

k if k =0 mod 4
k+3 ifk=1mod4
k+2 ifk=2mod4
k+1 if k=3mod4.

(k)2 =

In (74), make the substitution 277 — 29'i + (k). and write it as
N,+1

(k+qo)T
rei(k) = DD b,k wine /k L plt =KWt = (K)o T~ tp —iT,)
o=1 i

explj2n(fpt — (fc + fp)tp)]dt

N,+1

q.T
=3 by wiae /0 Pa(t)E(t + KT)po(t + (k — (K)o )T = iTor — tp)
o=1 T

explj2n(fp(t + kT) - (f. + fp)tp)|dt.

(77)
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Observe that
(k) = 0 if k =0 mod 27
71 —=(2° -~ (kmod 27)) k #0mod 27
so that the effect of the transformation is to shift the p, signal in (77) so that when ¢ = 0 the p, signal starts

at the same time or after the signal p,; s0 p, is a post signal for ¢ > 0. The index of summation in (77) can
now be changed to reflect the number of prior and post signals:

N,+1 Uy k(” -

¢T
rs1(k) = Z Z ba,(k),, +i2e’ /(; ps(t)E(t + kT )po(t + (k = (K)o )T — 1Ty — tp) (78)

i=l(o’)

exp[j2n(fp(t + kT) — (fc + fp)tp)ldt

where

l(0) = —(g—1) k=0mod 27 (scale-aligned)
KIE —q k # 0 mod 27 (non-scale-aligned)

and, from (75) and (76),

i) z_q#J k = 0 mod 27 (scale-aligned)
k(o) = . yoy_
3 2—71“15—'%"’—2—1——1 k # 0 mod 27 (non-scale-aligned)

It is straightforward to show that r, (k) = rs1(k — 2¢).
The autocorrelations are computed conditioned upon a known set of interfering bits, Z, &, which is the
set of all bits referenced in (78). The correlation between fading components can now be written as

1 g
ro(k:1, 1T k) = S Elrs 1 (F)ses (K)|Zs,1]

No+1 Ny+1 80 1 (07) =1t {o3)-1

= Z Z Z Z ba;,(k),; +i1271 bag,(k),,2+i22°'n (79)

oy=1 03=1 i1=ly(o}) ia=le(o})
T rq.T

[ [ mrtmtea) Retta = ), (s + (k= (9T = Ty = 0)

0 i
Pos(ta + (k — (K)oy)T — i2T,, — tp)exp[2jm fp(ta — t1)]dty dts.
The correlation between fading components at lag one can be written as
1
rolk: 1,211, 4) =1, (k;2,1|To ) = —E{r;v,(k)r,,g(k)ll,,k]

No+1 Ny+1 8,0 1 {0y) =1 %0 h_ae') (03)-1

=YXy ¥ ) D AR By

o1=1 02=1 ij=ly(o]) ia=l ., (03)
1e-2) (80)
oT rq.T : ,
/0 /0 P (t1)ps(ta) Re(ts — ty = 2° T)p;, (81 + (k — (k) )T —:T5; — tp)
Poalts + ((k = 27) = (k = 2* ) )T — ixT,, — tp)
exp(2i7 fp(ts — t1 — 2° T)]dt, dt,
Appendix B Programs Used to Evaluate the Probability of Error
for Fast Rician Channel of Section 3

The probability of error, presented by equation (19), when applying multiscale wavelet signaling is evaluated
by R11.12.c and comp_pe.Bit.c which appear in algorithm 1. Due to the tremendous computation involved,
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many tricks are used to speed up the computation. First, R11_12.c is used to calculate (79) and (80)
without specifying Z, x. The result from R11_12.c is stored in a table corresponding to slot of different shifts
of overlapping that will be imported to comp_pe Bit.c. The program comp.pe Bit.c will take the table
output by R11_12.¢c, assigns different set of Z, » and completes the calculation. As the size of 7, can be
huge, it is impractical to calculate the probability of error for all the different combinations in Z, . So,
what comp.pe Bit.c really does is randomly generate a large enough number of elements of Z, x and use the
average probability of error obtained from this subset of Z, x to approximate the true probability of error.

Algorithm 1 Compute probability of error for Rician fading

Program: R11_12.¢c — modified from Dr Noobn’s mason2.c

Chat Lo
Dtah State University

e s e e e~

Date: Oct 14, 1998

* This program computss tle autocorrelations upon a kaown sat
* of interfaring dits and ontput to a tadle that will be uwsed
* by comp_pe_Bit.c which will assign to each slot of the table
* a relative data value (-1 or 1) to cacalats the probability
© of error by resdomly gaserate a large number of trials.

.

erscccsesssenstesceetcrssersnnssrssanen/

B1mc.sde C(pmat ib.h>
<aitb.w>
<usudtypes.d>
<rtdic . w>
carditn e

8defise ca..oc_arTey pealloc_ array
Bde’isa ca..0C_matrix pcalloc_matrix

Bdetime minia,b} ((a) < (B} 7 (&) : (b))
Bdefine marie,b} ((a} < (B) 7 (b} : (a))
Sdatine KPS 1 De-10

Sda?ine S4ULEG. ¥ 1000

/» g.oba. variab.es */

18t Q, /+ length of wavelet sigmal s/

doub.a "0, /+ intarsymbol time for basic scals, whas TO=1,
1stersymbol time for scals 1 will be 2 ¢/

/* sumber of scales, We ¢/

/+ sumber of poists for psidata/phidata ¢/

/* sambear of coef? for psi/phi ¢/

/+ sampled tima for psi/phi witk Tst o/
dosb.e *psidate. /* wavelat fuactios o/

dowb.e *phidata. /+ scaliag tunction o/

char nutmap(iC).

char owt?i.e[0).

FiLe emapep,

F LY couttp,

ist R_yitab.esize ® 10000,

dout.e *N _tited.a. {+ fading correlation valmes o/
/eePor L_31 tad.e om.y oo/

doub.e R 21 9ca.e.

/eevecsccccsrencsscvancren 7/

doeb.e bess)0idoub.e!,

vold tatt N vt {doud.e), /¢ taitiate R_xi table o/

dowb.s A_71{dneb e, /* re lse for A_xi, fadiag corrsiatios o/
ist .overitet, ist:, 7o\ SAVAR Y

18t spper(iat, ist, it} 7o \tu_(s,x)(vagma)\) ¢/

7o \NC{E-(R) _\vagma)\) ¢/

sctions ses/

/+ They are azectly the szame, ¢/

2 /* duplicated to speed wp istegratiocs o/
doubie patlldosd.e);

doudb.e phi2(doud.e};

doub.e scale _pst;

doudle scale _psil;

doub.e sca.e_pst2;

doub.e scale_phi;

doubie scale_phil;

double scale_pat2;

Jevesssenssanesessrcrnancs/

int prime(int); /° segma‘w(segmacNe”segma:¥s) o/
double T_segmalint): /e T_{segna}w2 (segma}T o/
double deltat;

double qgaus(dosble (*fumc)(doudle), dowble, dowdls);
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void gauleg(void);
double x_pos[GAULEG X], weg{GAULEG ¥];

These global variables are for the multi integration
/

doudble &1,42,81,B2,C1,02,71,T2,T3;
int i, in_segmal, 1a_segmal;
double sart;

dosble (+ P_s} (doudble);

double (* P_segmal) (double);
double (+ P_segma2) (double);
double fint111{double);
double fint112{double);
double fint121{doable.
double fiati122(doudble);

int BigT;

double riicomp(int,int,int,int,int,10t);/* rilcomp(k,s,sagmatl, sagma2,i1,12) */
doadble riZcomp(int,int,iat,int,int,int);/* ri2comp(k,s,segnal,sogma?, 11.42) */

pd / /

ist wais{int argc, char seargv){

char e*psifaame;

18t psinamechar,type:

10t o,k ,segmat, segma?,i1,12;
doud.e Bd;

int counte;

char ?1.ename{20];

1at 2djde.tat;

tae 4

17{arge = 1} {
priat?{“usage: Rit_12.c paranfilevame\n”);
o180,

poifsame = {char *lavread{argv(1],“psifoame”, psivemechar,CEiR);
ssread argv(1),"T0",270,00UBLE};

astesd. argy(1],~¥u" 280, 107)

ssreas argv(i},."8d" &84, D0UBLE) ;

asreas.argv(i)."type
argr(1].7s" .88
cargv(1}."De.ta7" 8deltat DOUBLE);
targvi1].“443Da tat" 24d Deltat, INT);

s asd weights of the Gauss-Legendra quadraturs forwslae/

17,4458 tat:
de_tat o= primele;/2 O,
D177 segme prime 8il;

181t _pel _pai peifnama

189t R _nited .o B4,

Spriat? *1.esame. “1s8dXg” argv{1].8d4};
2eTcpyiontTl 6. %1 . atame. |

streat ettt -

out”:,
SLrCpY SuTmAp . ‘1. esame |
streat owtmap.” map”!

wap®p * ‘npea netmap, ¥,
1.0 ‘mapy

map’p * ‘opes ostmap."¥", .,

Prist? "“ne 4 sot npes mapti.e\ntl;
spriat® mapsy. Ls, “Owlg. Beeold, seRd\s"
fc.ose mapp

out®p s Topes cet®i.e.w".
wai_altontp -
oetfp = fopes . set®i.e."w"
prist? "Cos.d4 ot npes oet?i.

»

fc.oseinuttp |
12 typeest
forite-t 1¢ 1ec’
Tere iceprimey
Bap?p * *apea cetmep,s”;,
.o ‘maptf
wap?p o fopes. cetmap,"e"!. .
Print?~Cou.d sot opes mapfi.e\a");
’
priat? map?p . w=la\t" ¥},
fc.one map?p, .
forisegmalsl cogmaicaNoel) sogmalse){
®map?p = fopes ostmap."a”!,
shi.el'map?ple
map?p = fopes.owtmap,
. priat?i{~Cou.d not opes mapfiie\n®”);
}
fprist? {maptp,~sagmat=a\t”™ sopmel);
fciovelmap?p);
for{segmaZel nagma2<s{Nas1) sagma2es}{
maptp ® fopeaioutmap.“s™);
oniie('map?pli
mapfp » fopea{owtmap.“e”);
prisee{™ 4 sot opes mapfiie\s™);
}
tpriat? (mapfp “segma2eld\t" segmal);
fcloselmapfpl:

iliree)q

cprimats




for(11=lover (prime (segma1) k) ;11<upper (prime(segma1) ,prime(s),k);1144){
mapfp = fopen(outmap,“a");
while(!maptp){

mapfp » fopen(outmap,“a");
printf("Could not open mapfile\n*

}
fprints (maptp,"t1=Xd\n",11);
fclose (map?p);
for(12=lower(prime (segma2) k) ;12<upper (prims (segma2) ,prime(s) k) ;12++){
mapfp = fopen(outmap,"
while(!map?p){
mapfp = fopan(ontmap,”a");
printf{(“Could mot open mapfile\n");
}

fprintf (mapfp,“12=%d :",12);
fclose (map?p);
print? ("Xg\n",r1lcomp(k,s,segmal, segma2,11,12));
printf(“count=Xd \n",++count);
}
mapfp = fopan{outmap,“a");
shile(twaptp){
map?p = fopen{outmap,“a");
pristf(“Could pot open mapfile\s");
}
fprint? (maptp,“\n”);
fclose(maptp);
outfp = fopen(outfile
sbile(loutsp){
outfp ®» fopen{outfil,,"a"};
prietf("Couid not open outfile\n");

tprimtf{ostep,“\a*);
fcione{out?p);

Lvei
fori{1m0, 1¢{1¢<c{Na-prima(s))) ;tes){

Keie{tccprima(n));

map?p » fopes(outmap,“e”);

el tmaprp){
map’p * fopes{owtmap,”s™)
priat?i"Cou.d asot oped ma
’

fpriet? (mapfp, "k=Xd\t" k);

egmal<a(Fne1) ;segmates){
map?p ® fopeslowtmap,“at);

pPrist?{=Cos.4 sot opea mapfi.e\n~);
fpriot? map?p, “segmaield\t” sagmatl);
fc.oveimaptp.,
tfor sagmalel
®ap?p = *opa
wieltmaptp i
Sap?p @ fopesiowtmap,”a”);
print?i~Cos.d sot opes mapfi.e\s”);

egmal<n (Jge1)

outmap, el

gmazee) {

’
Tpriats i sep?p, “segma=ld\t” segma2);

fe. o0 map®p. |

for’ite over prime segmal .k} 11<upper{prime{sagnal} prime(s) k) ;i1++){
Bap’p & fopes owtmap,“s"},

1.0, 'wap?pie

mAp?p o fopes setmap,a”);

Print? “Cou.4 wot opes mapfi.a\s");

fprint? imap?p. tield\s~ 11},

fe.neeimaptp!,
forii2e ower:prime segmall
map’p * fopes. nutmep,“s”),
rwapeple
map?p » fopes owtmap,-s
PTIst? “Con.d sot apes mapti.e\n=),
'
TpTiat? imaptp, “12ela -,12);

k-(1<<prime(£))}} i1 2<upper (prime{segma2) ,prime(s), (K- (1<<prime(s))));12++){

egmal. sogma2,11,12));
pristf “counstela \a", eecount’,
)
sap?p o fopes ostmap,”e”};
hi.eltmaptp:-
Bap?p * fopes.cetmep.Ta”);
Print?i=Cou.d mot opea mapfiie\n”);
3
tpristeimapty.~\av),
fc.oseimapt
ost?p ® fopesiowt?i.e,“a"};
"iieltoutrpli
outfp » fopesiocut®i.e,"a™},
print?{"Cou.d sot opes outfi.s
b

Tprines{owtsp, “\a"},

mapfp = fopes(outmap,”a”);
tmap?p) {

mapfp = fopen{outmap,”s
printf(“Couid mot opes map?ile\:

}

50




fpriat? (map?p,"DONE AVIDH

fclose(mapfp)

void init_R_xitable(doudle Bd){

/+ Initiate the R_xi table. The table bas R_ritablesize, and {aitiated
according to the max tae required ( \{gq_s T \) where s 13 the max
scale), that iz, R_xi[0] for 2_xi(0), B_xi(R_ritablesize-1]}=R_xi(martan).

o/

int &;

doubla taun,total_time;

total_time = (double) (TO*(1<<Es)eQ)+BigT;
tap = total_time/(R_ritsblesize-1);
R_ritable = (double -)ulloc_u'rly(DUU!L!.R_H:Ablnuo."B._xltnhlc");
for(4 = 0; 1 < B_xitablesize; 14+) {
R.xitable[i] ® besnjO{2¢N_PIsBdvistan);
}
R_ri_scale = (R_ritadblesize—1)/total_time;

doudle B_1i{double tauw){
/¢ Sesume the fumctios i3 linear betveen naighdoring data

R_xi(taa) = R_ritable[r’ + deltae (B_xitable[n+1]-R_ritadle[n)) R
wbare B * int part of taunescals, delta = fraction part of tauescale.
o/

iat n;
doubie delts, fcaled_ time;

taa efads(ten);
acaied_time = (taneR_xi_scale);
2 = (ist] scaled_time
12 nem(R_vitablesize-1})

retursif_ritabla(sl):
aive 17(a<{R_zitablesize-1)){

de.ts © scaed_time - 8}

returs(R_ritadlela) * deltes(R_zitablala+1]-R_riteble(n]));

priat?{"R_zi owt of range!os=Xd taosXg\n",0,tan);
retern 0;

1st .over:iat segma, ist X)

1st 82,

22 = [1<<aegmal;
k€ 0 B = §2;
v = kle2,

1900x. retwrs -10-13;
a.sa retars -0,

,
18t wpperiist segma, ist s, lat

18t tregma.

teegma © ‘1¢<sagma’.

1.6 € 0. New teagma,

E * xltsegme

(T8 PANY

return (1st:i{{Q<<s] o toegma-ii/teagma);

e.se ¢
retsra (1at:iiiQ<<E; o & - 1i/tsegma);

o _Es1gi1et B i3t segma
e o/

1at B w1
/+ compute X - (X
.

1t 832,

12 = 1¢<oagma.
whiielk < O N *» 02,
ek X a2

12{'e} reters 0,
retura(y - 92;,

}
vold 1att_pei_philchar ofi.ssame){
FILE ot

1ot 4
cbar ztr(100];

pei_phi_ft.e;

/+ puitile format:
Naans = short same of wavelet file
I » sumber of coefficieats (isteger)
sampled_t » sampled time (doudle)
let (in istegers) (iateger)
¥_psi_phi = number of samp (iateger)
samplel, sampiel2, ... (double) (w at)
semplel, mamplel, . (double) (mcalieg)
./
/* the data is made wsiag the program “make

o of

ip_psi_phi_file = fopes(filesame, “r™);
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1¢(4a_ped_phi_file == ¥ULL) {

print#(“Could not open in_psi_phi_file\n");

oxit(0);
}
fscanf(in_psi_phi_file,"Xs\n",vavename):
(str,100,in_pwi_phi_file); numcoef = atoi(str);
(str,100,1n_pui_phi_file); psi_phi_sempled_t = atof(str);
(wtr,100,1n_pet_phi_file); Q = atoi(str);
(wer,100,in_psi_pbi_file); ¥_psi_phi = atod(str);
paidata » (double e)calloc_array(DOUBLE, (N_psi_phi+t),"psidata™);
a = (double s)calloc_array(DOUBLE,(N_psi_phi+t1),"phidata®);
;4 < N_psi_phi; d++) {
12(12gets(str,100,10_psi_phi_rile)) {

print?("Canpot read sample\na);

it (0);

}
putdata{l] = atof(str);

peidatal(X_psi_phi] = 0;
for(i = 1 < E_psi_pbi; fes) {
1f(t¢gata(ntr,100,4n_psi_phi_file)) {
priotf(“Cannot read sample\n”);
exit(0);
}
phidata(1) = ator{str);

phidatalB_pst_pbi) = O;
fclose(in_psi_phi_fila);

double prildouble t){
/+ Assume the function is libear between neighboring data

psii{tas) = psidataln] + deltas(psidata{n+1]-psidataln})

where & = int part of taucscale, delta = fractios part of tauescale.
o/
st n;
doudb.e delta, scaled_time;

sca.ed time = t/scale_pai;

® = (1ot} scaied_ time;

11 {w>e8_pat_pht) \
returnipsidata(N_psi_pbi]);

alze <
da.ta = scaled_time - 2;
retarnipsidatala) + deltec{psidata(n+t)-peidatalal));

dowb.e phiidosble tl{
/+ sevume the function i3 limear between neighboring data

peiitan) = phaidata(a] ¢ deitae(pdidata(n+1)~phidatafn])

where » * iat part of tavescale, delts » fractios part of tasescale.
o
ist »,
doud.e de.ta, sca.ad_time;

Bcailed time » t/sca’e_phi;

s = (int) sca.ed _Time,

190a>eN _pet _phi
retursipbidatall _psi_pht}};

ta ® sca.ed time - n;
returaiphidatals] + de.tac(pnidatalaet]-paidetalsnl});

doub.a peiildoud.a ti:

int &,
doub.a da.ta, sca.ed_time.

tca.0d time « t/0
5 {int] sca.ed time,

o1 _patl

eideralN _pus_pai}.,

ped,

sca.ed time - u,
retern(peidatalal < de.tecipsidatalnci)-psidatalnl));
)
¥

doub.e paiildowbie t){

i8¢ »;
double de.ts, sca.ed _time;

scaied time * t/ecale_pait;

» * (1ot} scaled.time;

12 {n>=0_puai_pnt)

returnipbidetalk_psi_pbi);,

ive ¢

de.ta = gca.ed _time - »;

ro{phidatala) + deltas(phidata(se+i]}-phidat

}
}

double pei2(doubie t}{

iot »;
double delta, scaied_time;

scaled_tima = t/scaie_psi2;
» = (ipt) scaled time;
17 (8>=¥_pst_pht)
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return(pstdata(¥_pei_pbil);
olse{

dalta = gcaled_time - 8]

returs(paidata{n] ¢ deltas(paidataln+1]-psidataial});

}
double phiz(doudble t){

int »;
double delta, scaled_time;

scaled_time = t/scale_pbi2;
n = (int) scaled time;
4f (a>=N_psi_phi)
reture(phidata[F_pui_pdil);
else{
delta = scaled_time - 2
retura(phidataln] + deltas(phidata[n+1]-phidata(n]));
}
}

ist prime(ist segma){
/¢ sagma’s{segmacis?sogna:segma-1) */

12 (segma < Fs)
retarn segma:
else
retars Ns;

dosbie T_segmalist wegma){
Io 7 {segmade2 {sagma}T o/

retars (T0°(1<Coagma));

dowt.e ?tiat122(dosb.a tas){
doub.a istegral;

1etegre. = R_vi{tan-Bigl);
oo _g{{savtetan));
gnal{{sartotansT2});

tetagra. «of
reters 1ategr

doub.e f1mt123idowble t1{
doet.e intagral;

wavt & ¢t

1stegra. = qgaws{(f1at127,{B1-t),(B2-¢));
13N

pmat (27100

returs isteagra.,

Gowb.e *iatilizidosb.a Tani¢
dosb.e tategr

Teturs lstegre.

dewb.e *1e1ll . Soeb.e t. ¢
doub o 18tegrs. .

sarr ot
i1stegrs
tateqra
totegra. *oF sagmalliteTll;.
reaturs tategra..

[SCTIRPIES SR PINN - g SR

donb.e rilcompitat 2,180 ¢, 1at segmal, it sagma2, tst 11, tat 12){

7% Titcomp X.o.segmal sopmal 11,12 o/
doeb.e \ategra..
doud.e sca.elng_factor,
17 ipcnuei
. poit
1s.9 = »

_pst ® (doub.a; {1¢<tn
_pst ==psi_phi_samp.ed. t;
Le.ph) = sca.e_pri;

11 (segaaicums){

P_segma) = patt;
1a_segmal = W

scale_pstl = (dosbie) (1<Cla_segmal);
scala_psil s=psi_phi_sampled_t;
scale_pait = scale psil;
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}

P,

egma2 = phi2;
in_segma2 = Ns;

ucale_psi2 = (double) (i<<in_vagma2);
wcale_psi2 sspai_phi_sampled._t;
scale_phi2 = scale_psi2;

™
T2
A1
42
L1}

B2 =

TOsk_minus_keigx(k,in_segmat)-11+T_segma(in_segmal);

TO*k_minus_kaig(k,in

mar((-T1),0);

gma2)~12+T_segma(in_

2in ((TO* (Q<<in_segmal)-T1),(TO*(Q<<in_ 8))};

max{(-72),0);

min{(TO*{Q<<in_segmal) -T2) ,(TO* (Q<<in_»)));
integral = qgeus(fintilt, A1,42);

/* For used with simple()e/

1o

iptegrel em=daltat;
iotegral ==deltat;

./
/e

o/

scaleing_factor » (double)(1<<(in

sc
ac

This takes care the sc.liag of psi and pbi wshich vas mot done
1n psi() and pni{).

agnai+in_segma2));

ing_factor = sqrv(scaleing factor):
tng_factor = (double)(1¢<1n_1);
intagra. /= scaleimg_factor;

"t el map?p){
map?p » fopes(owtmap,“a");
prist?{“Could mot opet mapfiie\s”};

eprint?imap?p,“Xg ",integrall;
tc.ove map?p
out?p = fope

ohi.eltout?pi{
oet’p & fopaniowtfile,"a");

prist

wtfi.e,

Cou.d wot oper outfil

*p ® fopen(ontmap,”a”);

\o");

fpristsinutfp. g ", istegrall);

fe.ovetout?p

reters integral;

doub.e riicompiiat X,int ¥, 10t segmal, int sagma2, int 11, iat 12){
/e T12comp'n

doub.e iategra.,

doeb.e

[ERPET O
P.s s pat.

¥.8.a put »

(12

(LR

1w

Pesopan,

P

.doeb. e
o pst cepet pht_samp.ed_t,

gwal,11,42) */

-aing_feactor;

1ecin_ 9,

sca.e pat = sca.e pst.

17 segmatcan

P sagmal = patl,

18 segmal * segmal,

ta.

amat o pRi1,
sogmal » V.

1f (oagma2ente;(
P_sagmed = peil,
18_negmaZ » segmaz,

in,

g2 * pLil;
Segmal * 33,

eil = {doabd.e’

t1ecy;

ogmatl;

pei2 » (doedim) {1<<ia_segma2);
812 ewpei_phi_samp.ed_t;

Sca.e_phi2 = wcaie_psi2;

LS L

T2 .7

Al = max((-71),0);
A2 .

81 = max((-T2),0);
32 = win((TOs(Q<<1m
1ategr

2180k, 1

egma{in

win((TOe (Q<Cin_sognat)-T1),(TO*{Q<<in_8)));

egma2)-T2) ,{TO*(Q<cin_s))):

® qgase(rimti21, 41,42);
scaleing factor = {double) (1<<(in

gmelsin_segna2));

scaleing_factor = sqrtiscaleiog_factor);
scaleing_ factor e= (double){1<Cin_s};
istegral /= scaleing factor;

na2)

[PH

atg {{N-{1¢C1n_3}} in_vegma2) -12¢+T_segma(in_segmal);




mapfp = fopes(outmap,
while(!maptp){
sapfp = fopen{outmap,”a")
print?{"Conld mot open mapfile\n");

}
fprint? (map?p,“Xg “,integral);
fclose(mapfp);
outfp = fopan(ootfile,”
while(touttp){
out?p = fopan(outfile,“a");
print?(“Could mot opes outfile\n");

i

}

tprintt{out?p,Xg “,integral);
fclose(onttp):

returs integral;

/
.
* Numerical intagration
.

void ganleg(void)
{

ist 3.4; -
dowble x., 3, i, PP, P3, P2, PI1:

T =1

for{1e0;1CCATLEG N:i+e3{
s = con(M_PIe(140.75)/(2°GAULEG_¥+0.5));
g0’
pre1.0;
p2=0 0;
for()m0; J€{2°GATLES ) ;3e+){
pepa.
pa=pi.
pls:.2 0e)e1iomep2-gep3)/(§e1);

PPe2°GAULEG Ne(zepl-p2}/(xvx-1);
2.z,
=z -pl/pp.

. poe[SAT1LAC S-1-1)e glex;
vog (SATLEG . 9-1-1)2.00x/{(1.0-2°2) *ppepp);

idosb.e (efusc}{dosbie), double &, doubls b)

[YIIEN
dowb.e Tr. ™. a3, 0,

™G be beal.
KTeC At -
=0,
for’jm0, J<CALIEC B, goet o
dpexres poel)]
o se sugl)]* ‘vrasc. . mmedre(etunc) (zw-dx));

reters ¢ ey

Goub. e Daes)C sesd.e B
dosb.e ar.a.
$oed o T1.7.am% 4801 4802,

19 Lererapsx. C 8 O ¢
yorer.
ans106708R4006 74 Oy (-13362600344 . 0oy (651619840.7
Sy - 11214424 18y (TTI92 330174y (~184.9062458))))) ;
SRIImATHEBARO4 11 O+ye (1079637985 . O+ye (3494880.718
oye ! BUTTI B485Ieye (267 . $63TT120ye1.0))));
anesanei/aned,

r a.se
w8 O/ax.
youor.
tTear-0 786396184,
anstel ey 1098628627 ¢-2+7+ (0. 7734510407 e~4

*yei-0.2073370630e-bey*0. 209388721 10-6)});
ang? = 0 158 1eye(0.14 3

eyei-0 89111476610-6oye (0, 762109516106

~ye0 93493b152e-7)));
aavesqre0 838619772/ax) e (cos(rz)vansi-s*sin(rx)cans2);

¥

returs ans,

g
Local Yariab.es'

compiie-command:“apcc ~o R11.17 -g Ri1_12.c -1/uer/include/local -lpmatlib -itm -im"
icomptie-command:“gcc ~o M11_12 -g R11_12.c -I/wsr/inclade/local -L/opt/11b -lpmatiib -lim -lx*
icompile-command - “gee -0 @R11.12 -g R11_12.c -1/sar/incinde/local -L/opt/1ib -ipmatiib ~lim -lm*
Bnd:

o/
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Program: comp_pe_Bit.c -- modified from Dr Moon’s mason2.c

Chet Lo
Utah State University

Da Dct 14, 1998

e s s e s e e~

Sisclode <pmatlib.b>
sinclude <alib.n>
$include <wsndtypes.h>
Sinclode <stdio.b>
8include <stdlib.h>
Sinclude <math.n>
#inclede <string.h>

#define calloc_array pcalloc_array
8define calloc_matrir pcalloc_matrix

8define min(a.b) ((a) < (b 7 (a) : (D))
Sdefine max{a,b) ((a} < (B) T (b) : (a})
8detine BPS 1.0e-10

8define GATLEG_ ¥ 1000

/+ g.oba. variables ¢/

int /+ length of wavelet aigmal ¢/

dowble TO. /+ intersymbol time for basic scals, wbem TOei,
istareymbo. time for scale | will be 2 s/

/* uumber of scales, Ns »/

1et .owvaritar, fat;; A

int wpperitast, iat, t{at}; /*

18t 15010t 1ne); IAd ).

18t Feigitae, tat};

18t prissiist;, /e segma’n(segmaca?sagma
doed.e T _sagmaliat!; /e T {vegma}=2"{segma}T o/

r11(0) (1) (segmal] [segma2] (11)(12) o/

doub.s eesssery], !
doub.e eeeceeriy;

vo1d teit_ritichar o},
vold 1att rilichar o},

dows .
doub .
dosb.e ?iat.doub.el,
doub.e de.tet = le-3,

doub. \*fusc{dowd.a), dosble, dowd
vold

doub.

V1 pot [SATING B], weg(SATLES_N

doab.e 11 _ve.vellat tst
doub. e

dnub.e

doub.e comp Pe void:,

dowb.e comp de.tasui ist, fat;

*0id setbitmap vold. . /* random.y sat the bitmap tadle »/

/ee 21t stetr oo/

st sebitmap. /* bit patteras ¢/

INt *mar_positine, smis poritios, /¢ for cal the dimenstos of ditmap ¢/
7014 teit_bitmap. vold;,

vo1d 181t _bitmapivold;

198 3,1.%, 00gmal sagmal. 11,12,

18t temp!, templ

fe leed to store the max/mia positios for individual scales o/
1t g,

saz_position « (ist *)mai.oc(stizeo?(tot)e{Npe1))-1;
win_positios o {int * mal.oc{nizeot (int)e(Nas1))-1;

for{gel;jcmilaet);Joet(
max_positioa{y) « 0,
wia_position{)) = 0;
}

tor(s=1;sce(Nye1} aee)(
tor{im-1,1<{1<<{Ve-prime(s)));1e2){
eieli<<prime(s;};
for(segmai=i segmal<=(Nne1);sopnates){
for (segmaZ=1;segma2<a(Nes1); sagmazes){
for(11=lovar(prime(sagmat) k) ;11<appar (prime(segmat) ,prime(s),k);11e+){
for(12elover {prime (segma2) .k} ;t2<upper{prime(segna2) ,prime(a) X} ;12++){
tempin(keig(k,prima(segmat))+i1s(1¢<prima(sagnal)))/{1<<prima{sagnal});
tempT= (ks {g{k,prime(segma2))+12+ (1<<prima (segma2)))/(1<<prime{segma2));
1f(tempicmin_positios




min_posttion(segmat]=templ;
e 1f(tempt>max_position[segmall)
sax_position(segmat]=templ;
1f (vemp2<min_position[segma2])
min_position{segmaz}=temp2;
alse if (temp2>max_pos
mar_position{segmaz]=tesp2;
}

tion[segma2])

tor(s=i;uca(Nas1) ;aee){
for(1=0;1<(1<<(Ns-prime(s)));i++){
x=ie(i<<prine(s));
for(vagmaiel;negmal <= (Ns+1) ;sagmal++){
tor (sagma2s egma2<x (Na+1) ; sagma2++){
for(11slover (prime (segma1) k) ;11¢upper (prima(segmal) ,priva(s) k) ;11+4){
for (12=1over (prime(sagma2) , (k-(1<<prime(s)})}) ; 12<upper (pr gma2) prime(s) , (k-(1<<prime(s})));12+4){
!-p!-(lllg(l.pﬂu(npnl))‘11'(l<(pﬂu(npﬂ)))I(l«prt—(upll));
xq?-(nig((x-(\«prm(-))).pn—(npu))onr(i«prm(upn)))/(l«pﬂ-(ngnz)):
12 (tampicuin_position[segmal])
min_position{segmai]=tompl;
else if (vampi>max _position[segmai])
max_position{segmat]stesp?;
1 (temp2<min_positionl~ .gma2])
min_position{segma2]«tomp2
else 1f(temp2>wax_position[segma2))
mar_positios [segma2)~temp.;

)
min_posttion(s),max_positionls]);

for(sei wca(Nast);
priats(~%d Xd\a

bitmap = {iat iloc(sizeo? (int o)e(Nmei})-1;

sorient aca(Nnel) nee)d
bitmap(s)={1ate)malloc(sizeot (1at)*(max_position[s] -win_position{s}+1))-min_position(s];

1st lowerlist segma, int k)
{
1at 92,

92 * (1¢Csagmal;

al¥ € 0 x o= 82;
¥ ¥le2,

120'x; retwrs -{Q-1/;
e.9e returs Q.

1Nt wpperiist segms, 1at s, iat k)
1at teegma,

toegme o (t<<oogmal,
¥ € 0. Eee tuagma.

ftat; (IQ€en] + toagma-1}/teegmal;

(imei{l1Q<<n; ¢ B - 1)/tsegma);

3
18t o2,

22 <Coagma .
L] LN R h
E =X 02,
A7('R retwrs O,
returs{k - 02,

r

iat Estgitar ¥, int segmai:

10t temp,

temp = K ws_Esig(k, vegmal
temp -= k|

reters (-temp’:

}

iat prime(int segma’{
/e negma’s(segmacis?segna segma-1) o/

retersimis(segma,¥s});
¥

double T_segma(int sagma}{
e T_{segmai=2 {segma}T ¢/

retura (TOe(1<<segma)};

void imit_rii(char ename){
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.

1ot s,k,segmal segma?, i1,12;
int {;

char ?ilename[30];

FILE #infile;

ri1 w(doublesesses)malloc(sizeot (doublasssse)s(Nas1))~1;
tor{sst;nca(Nas1);044){
r11{a} =(doubleseessimalioc(sizect (doublasese)s ((1<<(Ns-prime{s)))+1))+1;
/% +1 30 that the smallest value for i cam be -1 ¢/
for(4=-1;4<(1<<(No-prima(n))):1¢+){
x=ie(1<<prima(s));
r11(s) [1}={doubler+s+)malloc(sizeot (dovblemves) s (Nus1))~1;
for(sagmai=1;sogmai<s(Ns+1);sagma1+s){
r11[e] (1] (negma1)=(doudbl Jmalloc(sizect (doubleve) s (Nu+1))~1;
for (segmaZ=1;nogma2<=(Ns+1);nagma2++){
r11(s]{1](segma1] [segma2)=(doubles)malloc(sixeos (doubles)+(upper (prime(segma1) ,prime(s) k) -lower(prime (segma1) ,x)))-lover(prime(vegmal) k);
tor(1iwlosar(prime(segmal) k) ;11<upper(prime(segmai) ,prime(s) k) ;i14+){
r11(2) (1) [segeat] [segna2] (11])=(doubles)malloc(sizeoct (double) « (uppar(prime (segma2) ,prime(s),k)~lover(prime(segma2) ,k}))-lover (prime (segma2) X);

for(s=1;scn(Nss1);ues){
sprintf(filaname,"XsXdBdXg" name,s,Bd);
strcat(filename," 0ut”);
in?{lesfopen{filename,"r");
1 (1nf1lema¥ULL) {
printf ("Not able to open Xs\o",filename);
oxit(0);
}
tor(ie-1;4<(1<c(Bu-prime(n)));1++){
Esie{1<<prime(s));
for{segmai=i;segmai<a(Ns+1) segnates){
for{vegma2=1;segna2¢<=(X2+1);segma2+s){
tor(11slovar(prime(segmat) k) ;{1<upper (prime (segma1),prime{s) k) ;i144){
for(12eiover(prime(segma2) ,X);12<upper{prime(segma2) ,prime(s) k) ;12++){
focant (1nfile, Xl ar11{s) (1] (sagmal] {segma2] [11][42]);

3

}
}
fcioselinfile);

vold tatt_ri2(char ssese){

1at o .X.eegmal . vegmal,i1,12;
ot 1

char f1.evame(30];

FILE s1afi.e;

e(Noe1))-t;

r12(s] (dowd. *)malioc(stxec? (doublesess)e(1<<(Na-prima(n})));

for (1m0 1< (1¢<(Nu-primaln))) tee){

E=te(1<<prinels ),

r12(a][1)e{doud.evsse)mal oc{sizeot (doublasse) o (Nas1))-1;

for (vegmalel, segmaic<s(Nusl) ;sagmales){
ri20e){1){ lloc(s1xeot (double
for {segma2e mazes){
r12{s){1]isegma1) (regma2])nidoub.eo*)na’loc{sizeos (doubles) > (upper (prima (segmal) prime(s) k) -lower (prime(segmat) k)})-lover (prime (sagmal) k
foriitle.over(prime(segmal) k) 11<appar(prime(sagmat) prima(s) k) ;114+){

rt3le}{1](sagmat](sagma2){11)atdoud.av)malloc{s1ze0f (doudle) s (upper (prime (segmal) ,prime(s), (k-(1<<prime(s))))-lover (prima(sagna2),{x-(1<<prime(s)}}}))-lovar{prima(sagma2)}, (k-(1<<prima(s))));

*(Ns+1))-1;

}
}

tor{smt aca{Npet) geel(
sprist?ifi. ename, "Ls%dBdlg" .name. 0 8d);
strcatifi,ssema . ” out™);
1871 eatopen(fl. cname. 1"},
$2{1n?1  enaWTLL)
priat?{~Not ab.e to opes Ls\s",f1.ename);
oxit(o),
}
for(1=0;4<(1cciBa-primein}}};tes)(
K=ie{1<<pri; Iy,
for(sagmeisl sagmai<s (Huei) sogmates){
tor(segmaZel sagmaz<s (Nosl) sogmaz+s){
for{iis.ovar(prime segmel) k) ;11<uppar(prima(segmat) ,prime(s) k) ;114+){
for(12=lower (prime (segmal; (k- (1<<prima(s)})));12¢uppar{prime(segma2) ,prime{s), (k-{1<<primals))));12+e){
tacant(inf1.e,“X 0" &r12(0] [1])(sagmat](segma2] (11){12));

}
}
+
¥
}
fciose(intiiel;
}

double rii _vaive(isr s, iar §}{

int segmal, segmal, 11,12.k;
double tamp, swmel;

Keie(1<<prima(s));
tor(segmaisl;sagmat<n(Nu+1) ;sagmats+){
for (sagmad=1;segma2<=(Nu+1) ;sagma2+s){
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for(11wlover (prime (segma1) k) ;11<upper (prima(segmal) ,prime(s) 1) ;11++4){
for(12=lomer (prime(segma2) k) ; 12<uppar (prime(segma2) ,prime(s) k) ;12++){
temp = r11[s][1] [segmat]) [sagma2] [11][12]:
temp --Mmp[npnl][(l-ig(x,prm(upn))db(l«prm(ngul)))/(|<<prm(upu1))];
temp v=bitmap[segma2) [(xe1g(k, prime(sagma2))+12+(1<<prime(sagna2)))/(1<<prime(sagma2))];
sum 4= temp;

}
}
}
sum e=D;
return sum;

}

double r12_value(int u, it 4){
int segmal, segma2, 11,12,k;
double temp, sum=0;

k=ie(1<<prine(s));
for(segmai=1;segmaic<=(Ne+1) ;saguates){
for (segmaz=1;segma2<=(Nu+1 gma2++){

for(i1slovar(prime(segmal) k) ;i1<upper(prima(segmat) ,prime(s) k) ;11+e){
for(ﬂ-lanr(prm(uw).(l-(l«pﬂ.—(l))));12<npyar(pn-(up2).prt-(-).(k—(l«prl.ll(l))));ﬂ“){
temp = r12(s] (1) (segnat] [segma2] (1] (12];
temp exbitmap(segmat] [ (kaig (K prime(segnal))+i1e(1<<prina(sagnal)}}/ (1¢<<prima(segnal))];
teap --nmp[ugnzl[(x-i;((l-(x«yrt-(:))).prm(np-z))dz-(:«yrm(up-.z)))/(l«prx—(nyuz))]:
sum o= temp;

doub.s Fldowh.e localpei, int s, iat k)

doet.e ¥11,K22,X12;
dosb.e rhOl, THOZ;
doudb.e 1etegrai;

R1Z « 12 valve!
K72 » BO+T22 vaivels ,k};

(e SRTLH
[SRRCIR IR

17 1M72<0;
X272 * -k72,

reet o S/L.

ol = S/W227.

® R12/.9greiRin)esartixail);
L e be reclerseld.,

¥ = e reci-rhel..
V e sqrtireaivesel,
pitasg e o .oca.pey,

istagra. = ggawe Tiat, -®_PI/2, N_PI/}/(4eN_PI);

retary tstegra..

douwb.e *int dnsb.e t.
dosd. e f
dowt.e ti, ress.y
/¢ azemmes that Da.taPhi © O and psiangie « +-p1/2 «f
/e for Da.taPvi o -pi. peiasg.e=s-pi/2, cos{DeltaPhi-psiangle)nds/
e D o- weerelt)).
11 Bm=0

prisesi~g=o\s

th o= Vesinile.taPhi-petasgie)/K;
t1 «= latacsinipsiaag.ell,
resv.v = arp -F exl,
retarsiress.t;,

13

doub.e comp_De.taPviitst 8. tat X){
18t temp:

temp = oitmap(s}(x]-biemapls](x-1];
12 (tempews

returs 0,

dowb.e comp_Pelvold}{
1at H

Pal, Pes0, temp:

for(ss);scm(Bset) nee){
Peiso;
for (k=0 x<{1<<{Ne-prime(s})} kee}{
DeltaPhiscomp_DeitaPai(s,X);
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}

temp = F((N_PI/2),s,k) ~ F((-M_P1/2),5,X);
Pet+ntabs(temp);

}

Pel /= (double) (1<<(Ns-prime(s)));

Pel /= (doubdle) (1<<prine(s));

Pe += Pei;

return Pe;

void setbitmap(void){

int 8,k;

for(aei;aca(Ng+1) 0+4){
for (kr=min_position[s);k<mmax_position{s] ;xe+){
1f (rand () <(RAND_NAL/2))

bitmap(s)[x] = 1;
e

bitmap(n] (k] = -1;
}

priotf("\n");
for(s=i;uc=(Fo+1);84s){
for (k=min_position(s] ;x<smax_position[s);k+e){
prinef("%Xa " ,bitmap(s)(k]);

pristf(“\n") ;fflash(stdort);

matn{iat argc, char seargv){

}

dosb.e SDAb;
dosb.e 1tartEb¥O,endEbEO, stepEdNO;
dosdb.e db.Eb,Pe;

1at reamechar;

tat Nemberofrun, countsd;

doub.e comtPetable;

18t 8 _owtPetal

char  erlifuame, °ri2fnama;
char paramti.e(30);

VLR enutPe,

tot 1,

17large == 1) {
prist? “usage: comp_pa_Bit paramfile\s*
erttio,,

otrcpy paramti.ie argv{1)};
ritfaame o (char »)avread{argv{1],“riifsame"” Arvamechar,CHAR};

asread param?y.
read.paremfi.e
read param?i.e
readiparsmsi.e, 70" k70, J0UBLE};

Tead param?i.e, “S" &S DOUBLE)

ssread param’i. e, "SDdb" ,&SDAb,O0UBLE) ;

seresd peram?ile,“startEb¥0”,&startEhB0,DOUBLE
esTead param?i.e,“eadKbE0",2endEbNO, DOUBLE) ;
asresd paraa?i.e, “stepkbFO™ , AstepEDLNC ,DOUBLE);
asTead . param?i.e, “Numberofrve” ,R¥umberofres, [NT);

HeT RN, 1N
Q" ,2Q,107)

/eisitia.13e abscieses and seights of the Ganss-Legendre gsadraturs formmlas/
gon ogi:.

181t T11 Tt nama,

181t PIir i namal,

& =5, fo*CHECK o/
2 ® Sepnei10,-8D4B/10;,

181t _Ditmapi;.

sprist?iparemti.e, “LsBdlgSItgNela” argv(t], bd,50ab Ns);
streat(paremfi.a.” bit owt",
¥_ontPetab.e * (lat}(eadEbNO-etartEBNO)/stepEbs0 ¢ 1)
outPatab.e » (dowb.e* ma..ocitizec?{double) N _outPetab
for{1=0, 1¢<N outPetab.e i)

owtPetab.e(1])=0.

thitmap(},
for{db o srartKbNO,1=0; db <= eadFbEO; db += stepktNO,ies) {
50 » Kbepow(30,(-40/10)),
Pe = comp_Pals;
owtPetab.e(i] « outPetabie(1]s Pe;
pristf(“Xg Xg\s~,db,Pe);
}

countes;
outPe & fopea{paramfiis, sv");
17 (outPensNTLL){
print?{“Not able to opea Xs\n" paramfile);
ez1t{0};
}
tpriatf (ontPe,"\“count=ld Bakg WsXd\"\s",comnt,dd,
for(te0;:1 <N _outPetab.e;ies)
fprintflostPe, Iy Xg\n", (startEbNO+1sstepEBNO), (outPetable{i]/count));
fcioss(outPe};
}udilelcount (Humberofrua);
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Numerical integration (frow Numerical Recipes}

“ .o~

void ganleg(void)
{

1at §,4;
double 21, =, zl, pPp, P3, P2. P1:

xl = 13

for(4m0;1<GATLEG_N;14+){
z » cos(M_PIe(4+0.76)/(2°GAULEG_¥+0.5));
do{
pi=1.0;
P220.0;
for()=0; J<(2+GATLEG_¥) ; J++){
P3I=p2:
P2=pt:
p1e({2.00341) exep2-3op3) /(§+1);
}

PP=2+GATLEG_Ne(g+p1-p2)/(z*x-1);
=y
s=xl-pl/pp:

Ivatle(fabs(z-21)>EPS);

x_pos [GATLEG_¥-1-1)= ziex;

®eg (GAULEG_§-1-1)%2.0°x1/((1.0-z*x) vppepp) ;

»
}

doub.e qgaus(doud s (efunc)(doudie), double a, double b)
{

1at g,

dosb.e rr, ™. 41, $;

a0 belbeal,

=0 seib-a;;

=0,

for.je0, JCSATTES
srerrer_posly}:
s oe wagljlelletunc] {zmedr)s(etoac) (xmdx));

Phagis

returs 9 eevr,

’e
loca. Yariad.es

compi.e-command “apcc -0 -0 comp_pe_Bit -g comp_pe_Bit.c -I/usr/iaclade/.ocal -ipmatlib -lim -lm"
.compt.e-commasd "gcc -0 comp_pe_Bit -g comp_pe Bit.c -I/usr/imclude/local -L/opt/i1id -lpmatiidb -lim -1a"
Lcompl.e-commasd ‘grc -0 dcomp_pa_Bit -g comp_pe_Bit.c -I/wer/ivclude/local -L/opt/1ib -ipmetlib -lim -lm*
Rag

L\

Appendix C Programs Used to Evaluate the Matched Filter Bound

Algorithm 2 Compute data for matched filter bound

feacsen

Progres comp pe ¢

.
* Chet Ln
* Utad Stete Umtversity

date Dct M. 1999

cesssee /
<pmat 1D W)
<a.tb 3>
<uswdtypes W>
<atdte n>
<atd.ib B>
<math ¥
<strisg &>
<comp.T B>
(‘r-lﬂ [ %3
Siaciwde <aruti. . B>

Bdefine ((a) < (B) ” (&) : (B))
Bdefive (ia) < {B) * (b) : (a))
Bdefime calloc_arvey pcalioc_array
Bdefine calioc_mATriz pea.ioc_matriz
Sdefise DX_LKE 26000000

Sdafise XX _prob_step 0.001

Sdefise T2 1.41421366237

minia, b}

/+ giobal variadies */
ist type; /* 1: siagle fumction, 2: two fusctioms. */
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int find_ ev;
double *aato_tal
iat aoto_po_terwm
doubls w*cross_tablel, cross_unitl, cro
int cross_no_termsi;
double ecross_table2, crcss_unit2, crof
int cross_po_ terms2;
int no_path; /¢ pumber of path +/
double *c_tau, *alpha; /epath delay, path root-mean-squ magnitude ¢/
double ¢*M, = . /% M the auto_corr matrix; N the cross_corT matrix «/
double symbol_int_re; /* relative value (unit) of the signal ¢/
double symbol_isterval; /* absolute valne (unit) of the sigeal */
dcomplx *
doudle =Xz, xNx;
doable *dk0, wdki;
double dxO_prob, ¢dki_prob;
double DX_prob_range;
1t dk_prob_length;
double SN;
M double integration_range;
- Joves sscecasaces/
void imit_autocorr_table{char ¢
void imit_crosscorr_table{cdar

auto_unit, auto_ step, anto_length;

stepl, cross_lengthi;

tep2, cross_leagth2;

/+initiate auto_correlatios tablee/
.char ®); /einitiate cross_correlatioa tables/

v0id init_channel{char *); /*initiate chasnel charas/
double Rx{doudle); /eauto_corr with uwsity mait /sym_iat o/
double Rxy(double); fecross_corr with usity usit / sym_ist ¢/

vold isit_N{void);

void 1mit_N(vold);

void imit_2(void);

void rand_Z(vold); /*gonerates complex Ga
e cai_xNx(void);

dowb.e cal_z¥z{void);

void cal dxO(void};

vold ca. dk0_dki{vold);

vold apeort(ussigned loag, double * );

doud.e Q{doubl
dost.e qf{dosble);

void teit DK _problvoid); .
).

sian randon # ia Z v/

dowb.e fusc prod_dk0{dowbl
ac_ prob_dx1(dos
014 owtputichar e, char ¢);

dosb.e simp.e({doub.e (*func)(dosblel}, doubla, dosble);
dowb.e de.tat;
Jessscansas /

matsiint arge, ctbar svargel{
<haT *aNtocorT?hame, *Crosscorrraamel, ccrosscorrfoame?, *channsalfmame, *outputfaame;
18t awtocorr . Crosscorr 1, crosscorrnamechar2, chanmelsamechar, ostputfaamechar;

1tiarge me 10 o
prime’t age  comp_pe parem?i
evitO:

nama\n®);

read argv(l]."sym_tiat” Reymbo._iaterval ,DOUBLR);
tocorreaame = {char ¢lavreadlargv(i],“antocorr”,Rautocorrnamechar,CHAR);
crosecorreaamet » (char ¢)avread(argv(i],“crosscorri” dcrosscorrnamechari CHAR); /¢ ¢ side ¢/
trasscorresamel = lchar ¢)avread{argv(i],“crosscorr2”,Rcrosscorraamechar2, CHAR); /¢ - side o/
ostputfeame » (char ¢levread(argv{1],"outpurfile”,Routputfaamecbar,CHAR);
1Y fuame = lchar sjavreadiargv{i],"chassel”, Bchannalpamecbar,CEAR);
Tead argv{i}."De.te " Rda.tat ,DOUBLE /* integratios step ¢/
read argv(i),"type” . Rtype, KT);
read arge{i) . "?ina.
181t _awtocofr tadb.e
1. type we 7
Symbo. 1et_re = Irsymbo. tsterva.
.
SyBbo. 18t Te = sywbe._laterv
. 17itype == 2!
. 181% CFOeacorT tabd. e crorscorT?samel crosscorrinamal);
' 181t_channe. fca

ca._ANO a1,
. 181t 2K _prodl,
CNtpEtioetputfaaie, channe fhame);

vold 181t _autocorr_tab.elcdar *fijanama)
q

tota.
step_size
80_0f terms
ta

o/

iafiie » fopen{fi ename, ™r");
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if(infile == FULL) {
printf ("Could not opan amtocorrfile\n");

exit(0);
}
fecanf(infile,"X1f\n", Rauto_unit); /+ basic upit length ¢/
fecan? (1afile,"X1\a" tauto_length); /+ % of wnit the file contains ¢/
facant(infile,"X12\n" 2auto step); /% step size in unit detveen tarms ./

fscanf (infile,"%d\n" tanto_no_terms); /¢ # of terms +/
aute_table = {double ¢)calloc_array(DOUBLE,auto_no_terms J"anto_table*);
for(i=0;4<auto_no_terms;i++){

fscan?(infile,"X1f%1¢\n" ,kvan, Rauto_table(il);

¥
fclose(infile);

vold init_crosscorr_table(char sfilenamet, char efilename2)
{

FILE einfile;

doudle tau;

int 1;

/v crosscorr file format:

it
total_lengtd
step_size

80_07_terms
tao value

Y]

iafile = fopez(fileaamel,
1t (1 == NULL) {
priat?{"Counld wot opes crosscorrl file\s*);

exitl0];
¥
facan?(1afi
focan?(in?l

cross.tab.el ® (doable *)calloc_array{DOUBLE,cross_so_termsl,”cross_tablei”);
tori1m0;1<crons so_tarmsl;ies){ .
fecan?(iafile,"XILif\a" 2tag, Scross_tablei{i]);

fc.oeelin’ile);

1afi.e = fopen{fi.ename2,“r");
1f{1af1.0 we NTLL) {
priat?{“Cou.d mot opan crosscorr2 file\a");

focan®iia?y
tscantiiari
tecan?it
cross_tab.e2 = (dow e3calloc_array(DOUBLE,cross_so_terms2,“cross_tabla2");
for(1m0,1¢croes 2o _terms2:1e+){

scan?’1a?i. e, "L. 7. ¢\a" Rtaw, &cross_table2(i]):

tc.ovellati e,

013 1s1t_ch
FILE cinfie,
[TISNN

c.tas2 a.phal

o/

te?i.e ® fopealcaaase. "T"),
19(1aftle = WULLS {
Pristfi{~Cou.d mot opes chamse. file\s"):
ar1vios,
3 .
fecanti{isri.a,"%d\n" . Eno_path}; /+ sumber of pati
c_taw = (dowb.e *ica..oc_array(D0UBLE, sa_path,"c_t
aiphs = (dosb.e *ica..oc_array(JOUBLE,so_path,“alpha™);
for{1=0;1¢n0_path, 1o}
facast{tn “%.e%.f\a" 2c_tas(t), Malphali)):
fcioseltaft

}

vold teit_Z{votd){
Z » {dcomp:T *)mailoc(aizeof (dcompl)emo_path};
}

void rasi_Z(vold){
it §;

for(1e0:1<no_path;1e+)
Z[1) = dCompiz((gran()/r2),(gras()/r2));

doutle Rr(doudble tam)
{

double t, scaled_tas, delts;
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y

int »;

tan /= symbol_int_re;

1¢ (tan>0)
t = tao;

alse
t = ~tan;

t = anto_unit;

scaled _tan = t / auto_step;

n = (int) scaled_tau;

1# (a>=(anto_no_terms-1))
return(auto_table[euto_no_terms-1]);

delta = scaled_tan -
return(auto_table[n) + deltas(anto_table[n+i}-auto_table{a]l));

double Rry(double tan) /eCrosscorrslations/
{
double *cross_table, cross_ssit, cross_step;
int cross_no_terms;
double t, scaled_tau, dalta;
int »;

tau /= symbol_int_r

1f (tae>0){
t = tao;

t = -tau;
table = cross_table2;
wpit = cross_snit2;
tep2;
_Bo_tarms2;

retura(cross_table(cross_no_terms-1]);

delte = scaled_tas -s;
retursicross_table(a} ¢ dai

}

(cross_tadble[n+1)-crows_table(n]));

}

vo1d 1sit_N(vold:

. ve_v, sum;

N » (doub.a *e)ca’.oc_matriy{DOUBLE,no_path,no_path,"n");
tor(1=0,1¢no_path;ies]
for{ym0; j<so_path;jes)
w{1){j)ea.pral1)saiphaly)ers((c_tas(i)-c_taulyl));
prisee(”“m \o":,
fori1m0;4<no_path;1ee)é
for{jmd, J<ao_path;jse]
printri=Te = m(1J{J]),
pristsi“\a~;,

vold tatt_Nivetd:
4
1t 1, §,

3 = (dowb.s *v)c

for(1=0. 1<mo_peat
for{)e0; 1<no_path, jse;

(1) (J)ma.paalt)cn.pualj)orxy(ic_tanli)-c_tan{3})};

.o¢_metriz(JOUBLE ,00_path, no_path,”N*)
1ee;

doub.e ca. _ERs]
{
ist 1, §:
dcomplt temp, templ;

templ  dComp.2(0, 0}

for(1s0:1<no_pach ies]
for{)e0; j<mo_path;jse){
temp v dCompix(M(1]{})]), 0);
temp » dCwul(temp. Zl1)};
temp » dCwuivemp, dCosjigiZ(j)));
tempt = dCadd{temp, tempi),
}

retura{templ.re);

double cal xNz{)
{
it 1, §;
dcomply temp, templ:

temp) ® dComplr(0, 0):

for{im0;t<no_path;ies)
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for(§=0;j<mo_path;j+e){
temp » dComplx(N{11{31, 0);
tewp = dCwul(temp, Z[1])):
tewp = dCanl(temp, dConjg(Z[j1));
templ = dCadd(temp, tempil);

return(temp!.re.

void cal dx0_dx1()
{

int 1;
doudle sqr_zXz, a, b ;

dx0 = (doudble ¢)calloc_array(DOUBLE, (DK_LEN+1),"dk0");
dr) = (double )calloc_array(DOUBLE, (DK LEN+1),"dk1");

for(1m0;1<=DK_LEN;1++){

rand_20);

Mz = cal_ zMx();

2¥z = cal_zNz();

sqr_ziz = sqre{zMz);

dxo{1] = (sMz - xNx)/sqr_zMzx;

dxi1(1] = (zMz + xz¥x)/sqr_zMz;

/+ Assume 1 is sent at this scale shile KO: -1 on othar scale
kt: 1 om other scale
o/

}

hpsort (DK_LEN, dx0);

psort{OK_LKN, dxi1);

for{1m0;1<OX_LEN;1+4){
ax0({)=dx0(1e1);
daxi{1)adxi[i1];

}

a = dro{{OK_LEE-1)]:

b e arti[OK_LEN-1)];

letegratios renge « mar(a,b);

% _prob _rasge ® istegratios_raage;

vold ce. dx0!}

dx0 » (dowb.e *}calioc_arrey(DUUBLE, (DK_LEE+1),"dx0");
for 1e0, scodk (KN i+){
rasd 10,
sz » cal_zmx();
dro(t] » sqre(zmx);
WprortidX _LEN, 4x0);
for{1m0, 1€IK_LEN tes)
axo(t)maxo(tet];
istegreatios range = d¥O{(DK_LKN-1}];
2¢_prot_rasge = 1stegretios_range;

vo1d tett_ 3¢ probl}

18t 4XO_prob_ 1, dxi_prob.1, dNO_1.dx1_1, begia_i,
Gout e Je.ta,

X _prot__eagth * ‘1st:)X_prob_rasge/DK_prob_step;
K _prot_.eagth e 1,
4NC _prod e (Goubd.s *ica..oc_arrey(J0UBLE,dx_prob_lesgth,“dk0_prob”);

de.ts = XM _prot_step.
a0 1 = 0
axG_prov(0) = 0.
tor dNC_prow 1| .dNO prod_i<mdk_prob_.eagth;dk0_prob_i+s ,delte+=DK_prod_step){
begis 1 = dx0 1.
b1 el iANO(dNC_1)<de. ta RRI4NO_{1<{DK_LEN-1)))
X0 _1ee.
ead 1 = a¥0 1,
dNQ_pro2(dw0 pros 1) s ldoeb.s){emd 1 - begia_1)/(DK_LENDK_prob_step);
’
pfree_artey 4xo:,

17itype w= 23¢
i ca..o¢_array{J0GBLE,dX_prob_leagth,"dxi_prob™);

dx1_prob(0] s o,
fori{dki_prod_t=1,dR1_prod_i<adk_prob_lesgth:dXi_prob_i++,deltas=DK_prob_step){
begin 1 » a1 1.
wai.e({an1[dr1 1) <de.talRR{dR]_1<(DK_LEN¥-1)))

dx1_qee,

esd_t ® dx1_%,
dx1_problaxi_prob_ 1] = (dowb.e)}{end_{ - begin_1)/(DK_LKN*DK_prob_step);
}
pfree_arvayldit};
}

doubla PC_dxO{dosb.e x)

<

11 {g==0)

reters(0};
scaled_x = x/DK_prob_step;
a » (int) scaled r;

12 (w>e(dr_prob_ieagee-1)}
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return(0);
‘ else
return (dkO_prob[ne1});

\
\
|
‘ double PE_dki(double 1)

iat n;
double scaled_x;

12 (x==0)

return(0);
scaled_x = x/DK_prob_step;
» = (iat) wmcaled_x;

12 {a>=(dk_prob_langth-1))
- return(0);

olse
pe return (dxi_prob(e+1]);
- }

double fanc_prob_dk0(double E)
{
double NO, temp;

temp = ~(SN/10);

¥O = pow(10,temp);

temp = 3qrt(¥0); /+Bba1, Bs=2 o/
temp = Q((E/temp))ePE_dx0(K);

retarn(temp);

dosb.e faac_prob_dki(doubls &)
{
doub.e ¥0, temp

temp = ~{SN/10);

WO ® pos!10, temp):

temp o 3Grt{NO); /eEbat, Rs=2 of
temp » Q({R/temp))+PE_dx1(E);

retersitemp!;

¥01¢ oetpetichar *fnams, char scfoame)

B oetpr,

char owtput?i.e(30);
doub.e integra.,
18ty

doub.e taw,

rage [600] ;

sprist?iontputfi.e, “Ls . Xa-%. 1aXs . parr”,faame type,symbol_interval ,cfname);
PPt = fopes owtpetfi.e."w"};

171 - ) e
priatf ~Cos.d mot opem output fi.e! \a");
11t .0,

Wb SHC25 SWemO 1] {
integra. = simp.e’feac_prob_d¥0,0,istegration_range);
17 type w. 1e
tpriat® i fpt "1¢ Ze\a" S, tntegral);
LSS TTRE S F

averagelics] » integra..

1 itypemel y

1s0.

foriSBen SN<Zb, SHew0 1)«
istegra © simp.eifenc prob dxt, 0, lategratios_rasge);
sverageiise] oo tategra..

r

‘ 1 =0,

for (SBebp SHeZb, SHead 4

tprinttifpe.~1?  Re\a" SK, {average[ies]/2)};

14
tc.oveltpt:,

sprintfiowtpet®i.e,“ls 14-1 tels.pdf™ foame,typs.sysbol_intarval ,cfoame};
Tpt = fopesiostpet?iie,~w ),
12(fpt we WAL ¢
priatf(“Cou.d sot open outpst fiie! \n"};
er1e(0);
}

Tprisef(fpt,“TitieTert: POF Sym_faterval:Xr\a”
integral = simpie(PE_dX0,0,{ategration_rasge}
£priateirpt "\ dhO 4:Xf1" \a", istegral);
foritaoed tay<=integration_range;tas += 0.1)
- fpriat?(fpr,.“1? Xf\s".tes,PE_dxO(tas));
1£{typom=2){
istegra. = simple(PE_dX1,0,intagration_range};
‘ fpristf(fpt, ~\a\"dx! 2\ \a”,integral);
for(tau=0;tas<eintegration_range;tay += 0.1)
fprisef(fpr, ~Yr Xf\a”,tau.PE_dki(tes));

symbol_ipterval);

}
fclose(fpt);

Jeesessccrnsssstsnsannanesaans

* Numerical tategration
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double wimple(doublae (sfusc)(double), double a, double b)
doubla tan,integral=o;

for (tau=s;tan<=b;tau+adeltat)
integral += (efunc)(t:

istegral ¢= deltat;
retorn iategral;

double G(double )
{

double a,b,c;
bexex+5.61;
a=0.86e3qrt(b)+1.68%x;
ca(double) (-xe2/2);
x=(double)exp(c)/a;
returs(x);

}
vold spsort{unsigmed loug », doudle ral[l)

sasigued long i.ir,.3,1;
doubie rra;

1¢ (s < 2) returs;
ieln 3> §)e1;
ires:
tor {1 4
12 (o> 1)
rraeral--1];

reltr)=ral1],
1 temtr e 13 4

raf1)erre.

1) <ooar) §

) € 1z ax raly) < ra(gen)] ges;
12 ‘rre < ralj))

reft)eraly),

1ay.

y Cem 1,
* e.se yeiret,

re{t)erre.

fe 1€ Copr 1w86-U2 Sumerica. Recipes Software ¥R4,1. ¢/
’e

Loca. Variad. es
compl.e-commesd ~apcc
crmpt @-crmmand epct
“Ree

0 -0 comp_pe -g comp_pe.¢ -1/esr/include/local
-0 -0 comp_pe -g comp_pe.t -l/esr/imclude/local
Lcomp) e~ command
ad
./

-1/home/siksp/home1/1nciude -L/opt/11b -lpmatlib -1im -lm -lcomplr”
-L/opt/i1b -ipmatlib -lim -is -lcompix"

-0 -0 comp_pe -g comp_pe.c -1/wsr/include/local -1/homa/siksp/womei/inciede -L/opt/1ib -lpmatlib -lim -lm -lcomplx"
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